Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
2.
Sci Adv ; 7(5)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33514541

RESUMO

Ultrafast and precise control of quantum systems at x-ray energies involves photons with oscillation periods below 1 as. Coherent dynamic control of quantum systems at these energies is one of the major challenges in hard x-ray quantum optics. Here, we demonstrate that the phase of a quantum system embedded in a solid can be coherently controlled via a quasi-particle with subattosecond accuracy. In particular, we tune the quantum phase of a collectively excited nuclear state via transient magnons with a precision of 1 zs and a timing stability below 50 ys. These small temporal shifts are monitored interferometrically via quantum beats between different hyperfine-split levels. The experiment demonstrates zeptosecond interferometry and shows that transient quasi-particles enable accurate control of quantum systems embedded in condensed matter environments.

3.
Phys Rev Lett ; 122(12): 123608, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978038

RESUMO

By embedding a thin layer of tantalum in an x-ray cavity, we observe a change in the spectral characteristics of an inner-shell transition of the metal. The interaction between the cavity mode vacuum and the L_{III}-edge transition is enhanced, permitting the observation of the collective Lamb shift, superradiance, and a Fano-like cavity-resonance interference effect. This experiment demonstrates the feasibility of cavity quantum electrodynamics with electronic resonances in the x-ray range with applications to manipulating and probing the electronic structure of condensed matter with high-resolution x-ray spectroscopy in an x-ray cavity setting.

4.
Sci Rep ; 8(1): 11261, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050130

RESUMO

We introduce a method to study the spatial profiles of standing spin waves in ferromagnetic microstructures. The method relies on Nuclear Resonant Scattering of 57Fe using a microfocused beam of synchrotron radiation, the transverse coherence length of which is smaller than the length scale of lateral variations in the magnetization dynamics. Using this experimental method, the nuclear resonant scattering signal due to a confined spin wave is determined on the basis of an incoherent superposition model. From the fits of the Nuclear Resonant Scattering time spectra, the precessional amplitude profile across the stripe predicted by an analytical model is reconstructed. Our results pave the way for studying non-homogeneous dynamic spin configurations in microstructured magnetic systems using nuclear resonant scattering of synchrotron light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA