Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727272

RESUMO

Microtubules are an indispensable component of all eukaryotic cells due to their role in mitotic spindle formation, yet their organization and number can vary greatly in the interphase. The last common ancestor of all eukaryotes already had microtubules and microtubule motor proteins moving along them. Sponges are traditionally regarded as the oldest animal phylum. Their body does not have a clear differentiation into tissues, but it contains several distinguishable cell types. The choanocytes stand out among them and are responsible for creating a flow of water with their flagella and increasing the filtering and feeding efficiency of the sponge. Choanocyte flagella contain microtubules, but thus far, observing a developed system of cytoplasmic microtubules in non-flagellated interphase sponge cells has been mostly unsuccessful. In this work, we combine transcriptomic analysis, immunofluorescence, and electron microscopy with time-lapse recording to demonstrate that microtubules appear in the cytoplasm of sponge cells only when transdifferentiation processes are activated. We conclude that dynamic cytoplasmic microtubules in the cells of sponges are not a persistent but rather a transient structure, associated with cellular plasticity.


Assuntos
Diferenciação Celular , Interfase , Microtúbulos , Poríferos , Microtúbulos/metabolismo , Animais , Poríferos/citologia
2.
Plants (Basel) ; 12(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38140427

RESUMO

Cell-to-cell transport of plant viruses through plasmodesmata (PD) requires viral movement proteins (MPs) often associated with cell membranes. The genome of the Hibiscus green spot virus encodes two MPs, BMB1 and BMB2, which enable virus cell-to-cell transport. BMB2 is known to localize to PD-associated membrane bodies (PAMBs), which are derived from the endoplasmic reticulum (ER) structures, and to direct BMB1 to PAMBs. This paper reports the fine structure of PAMBs. Immunogold labeling confirms the previously observed localization of BMB1 and BMB2 to PAMBs. EM tomography data show that the ER-derived structures in PAMBs are mostly cisterns interconnected by numerous intermembrane contacts that likely stabilize PAMBs. These contacts predominantly involve the rims of the cisterns rather than their flat surfaces. Using FRET-FLIM (Förster resonance energy transfer between fluorophores detected by fluorescence-lifetime imaging microscopy) and chemical cross-linking, BMB2 is shown to self-interact and form high-molecular-weight complexes. As BMB2 has been shown to have an affinity for highly curved membranes at cisternal rims, the interaction of BMB2 molecules located at rims of adjacent cisterns is suggested to be involved in the formation of intermembrane contacts in PAMBs.

3.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003717

RESUMO

Soluble chaperones residing in the endoplasmic reticulum (ER) play vitally important roles in folding and quality control of newly synthesized proteins that transiently pass through the ER en route to their final destinations. These soluble residents of the ER are themselves endowed with an ER retrieval signal that enables the cell to bring the escaped residents back from the Golgi. Here, by using purified proteins, we showed that Nicotiana tabacum phytaspase, a plant aspartate-specific protease, introduces two breaks at the C-terminus of the N. tabacum ER resident calreticulin-3. These cleavages resulted in removal of either a dipeptide or a hexapeptide from the C-terminus of calreticulin-3 encompassing part or all of the ER retrieval signal. Consistently, expression of the calreticulin-3 derivative mimicking the phytaspase cleavage product in Nicotiana benthamiana cells demonstrated loss of the ER accumulation of the protein. Notably, upon its escape from the ER, calreticulin-3 was further processed by an unknown protease(s) to generate the free N-terminal (N) domain of calreticulin-3, which was ultimately secreted into the apoplast. Our study thus identified a specific proteolytic enzyme capable of precise detachment of the ER retrieval signal from a plant ER resident protein, with implications for the further fate of the escaped resident.


Assuntos
Calreticulina , Nicotiana , Calreticulina/metabolismo , Nicotiana/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Plantas/metabolismo , Peptídeo Hidrolases/metabolismo
4.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37762447

RESUMO

To move from cell to cell through plasmodesmata, many plant viruses require the concerted action of two or more movement proteins (MPs) encoded by transport gene modules of virus genomes. A tetra-cistron movement block (TCMB) is a newly discovered transport module comprising four genes. TCMB encodes three proteins, which are similar to MPs of the transport module known as the "triple gene block", and a protein unrelated to known viral MPs and containing a double-stranded RNA (dsRNA)-binding domain similar to that found in a family of cell proteins, including AtDRB4 and AtHYL1. Here, the latter TCMB protein, named vDRB for virus dsRNA-binding protein, is shown to bind both dsRNA and single-stranded RNA in vitro. In a turnip crinkle virus-based assay, vDRB exhibits the properties of a viral suppressor of RNA silencing (VSR). In the context of potato virus X infection, vDRB significantly decreases the number and size of "dark green islands", regions of local antiviral silencing, supporting the VSR function of vDRB. Nevertheless, vDRB does not exhibit the VSR properties in non-viral transient expression assays. Taken together, the data presented here indicate that vDRB is an RNA-binding protein exhibiting VSR functions in the context of viral infection.

5.
Viruses ; 14(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36560746

RESUMO

Movement proteins (MPs) of plant viruses enable the translocation of viral genomes from infected to healthy cells through plasmodesmata (PD). The MPs functions involve the increase of the PD permeability and routing of viral genome both to the PD entrance and through the modified PD. Hibiscus green spot virus encodes two MPs, termed BMB1 and BMB2, which act in concert to accomplish virus cell-to-cell transport. BMB1, representing an NTPase/helicase domain-containing RNA-binding protein, localizes to the cytoplasm and the nucleoplasm. BMB2 is a small hydrophobic protein that interacts with the endoplasmic reticulum (ER) membranes and induces local constrictions of the ER tubules. In plant cells, BMB2 localizes to PD-associated membrane bodies (PAMBs) consisting of modified ER tubules and directs BMB1 to PAMBs. Here, we demonstrate that BMB1 and BMB2 interact in vitro and in vivo, and that their specific interaction is essential for BMB2-directed targeting of BMB1 to PAMBs. Using mutagenesis, we show that the interaction involves the C-terminal BMB1 region and the N-terminal region of BMB2.


Assuntos
Hibiscus , Vírus de Plantas , Vírus de RNA , Hibiscus/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Retículo Endoplasmático , Vírus de RNA/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Nicotiana , Plasmodesmos
6.
J Vis Exp ; (183)2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35660707

RESUMO

Principles of DNA folding in the cell nucleus and its dynamic transformations that occur during the fulfillment of basic genetic functions (transcription, replication, segregation, etc.) remain poorly understood, partially due to the lack of experimental approaches to high-resolution visualization of specific chromatin loci in structurally preserved nuclei. Here we present a protocol for the visualization of replicative domains in monolayer cell culture in situ, by combining EdU labeling of newly synthesized DNA with subsequent label detection with Ag-amplification of Nanogold particles and ChromEM staining of chromatin. This protocol allows for the high-contrast, high-efficiency pre-embedding labeling, compatible with traditional glutaraldehyde fixation that provides the best structural preservation of chromatin for room-temperature sample processing. Another advantage of pre-embedding labeling is the possibility to pre-select cells of interest for sectioning. This is especially important for the analysis of heterogeneous cell populations, as well as compatibility with electron tomography approaches to high-resolution 3D analysis of chromatin organization at sites of replication, and the analysis of post-replicative chromatin rearrangement and sister chromatid segregation in the interphase.


Assuntos
Cromatina , Tomografia com Microscopia Eletrônica , Núcleo Celular/genética , Cromatina/genética , Cromossomos , DNA/química , Interfase
7.
New Phytol ; 229(2): 1052-1066, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866987

RESUMO

Plant viruses encode movement proteins (MPs) that ensure the transport of viral genomes through plasmodesmata (PD) and use cell endomembranes, mostly the endoplasmic reticulum (ER), for delivery of viral genomes to PD and formation of PD-anchored virus replication compartments. Here, we demonstrate that the Hibiscus green spot virus BMB2 MP, an integral ER protein, induces constrictions of ER tubules, decreases the mobility of ER luminal content, and exhibits an affinity to highly curved membranes. These properties are similar to those described for reticulons, cellular proteins that induce membrane curvature to shape the ER tubules. Similar to reticulons, BMB2 adopts a W-like topology within the ER membrane. BMB2 targets PD and increases their size exclusion limit, and these BMB2 activities correlate with the ability to induce constrictions of ER tubules. We propose that the induction of ER constrictions contributes to the BMB2-dependent increase in PD permeability and formation of the PD-associated replication compartments, therefore facilitating the virus intercellular spread. Furthermore, we show that the ER tubule constrictions also occur in cells expressing TGB2, one of the three MPs of Potato virus X (PVX), and in PVX-infected cells, suggesting that reticulon-like MPs are employed by diverse RNA viruses.


Assuntos
Proteínas do Movimento Viral em Plantas , Vírus de Plantas , Retículo Endoplasmático , Plasmodesmos , Nicotiana
8.
Front Cell Dev Biol ; 9: 784440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35174159

RESUMO

A detailed understanding of the principles of the structural organization of genetic material is of great importance for elucidating the mechanisms of differential regulation of genes in development. Modern ideas about the spatial organization of the genome are based on a microscopic analysis of chromatin structure and molecular data on DNA-DNA contact analysis using Chromatin conformation capture (3C) technology, ranging from the "polymer melt" model to a hierarchical folding concept. Heterogeneity of chromatin structure depending on its functional state and cell cycle progression brings another layer of complexity to the interpretation of structural data and requires selective labeling of various transcriptional states under nondestructive conditions. Here, we use a modified approach for replication timing-based metabolic labeling of transcriptionally active chromatin for ultrastructural analysis. The method allows pre-embedding labeling of optimally structurally preserved chromatin, thus making it compatible with various 3D-TEM techniques including electron tomography. By using variable pulse duration, we demonstrate that euchromatic genomic regions adopt a fiber-like higher-order structure of about 200 nm in diameter (chromonema), thus providing support for a hierarchical folding model of chromatin organization as well as the idea of transcription and replication occurring on a highly structured chromatin template.

9.
Front Plant Sci ; 10: 873, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379892

RESUMO

Phytaspases belong to the family of plant subtilisin-like proteases and are distinct from other family members, as they have strict and rarely occurring aspartate cleavage specificity and unusual localization dynamics. After being secreted into the apoplast of healthy plant tissues, phytaspases are able to return back into cells that have been committed to cell death due to a variety of biotic and abiotic stresses. It was recently discovered that retrograde transport of phytaspases involves clathrin-mediated endocytosis. Here, consequences of phytaspase internalization were studied. Proteolytic activity of phytaspases in the apoplast and intracellular protein fractions obtained from Nicotiana benthamiana leaves containing either endogenous phytaspase only or transiently producing Nicotiana tabacum phytaspase-EGFP protein (NtPhyt-EGFP) was determined. We demonstrated that triggering phytaspase internalization by antimycin A-induced oxidative stress is accompanied by re-distribution of phytaspase activity from the apoplast to the cell interior. Inhibition of clathrin-mediated endocytosis by co-production of the Hub protein prevented phytaspase internalization and phytaspase activity re-localization. Specificity of endocytic uptake of phytaspases was demonstrated by the co-production of an apoplast-targeted mRFP protein marker, which retained its apoplastic localization when phytaspase internalization was essentially complete. Overproduction of NtPhyt-EGFP, but not of the proteolytically inactive phytaspase mutant, per se caused moderate damage in young Nicotiana benthamiana seedlings, whereas antimycin A treatment induced a pronounced loss of cell viability independent of the NtPhyt-EGFP overproduction. Interestingly, inhibition of clathrin-mediated endocytosis abrogated cell death symptoms in both cases. In contrast to stress-induced internalization of tobacco phytaspase, Arabidopsis thaliana phytaspase-EGFP protein (AtPhyt-EGFP) was spontaneously internalized when transiently produced in N. benthamiana leaves. The AtPhyt-EGFP uptake was dependent on clathrin-mediated endocytosis as well, the internalized protein being initially visualized within the membranous vesicles. At later time points, the EGFP tag was cleaved off from AtPhyt, though the elevated level of intracellular AtPhyt proteolytic activity persisted. Our data, therefore, point to clathrin-mediated endocytosis as a means to deliver proteolytically active phytaspases into plant cells. It would be interesting to learn whether or not phytaspases are unique among the large family of plant subtilisin-like proteases in their ability to utilize retrograde trafficking.

11.
Biochim Biophys Acta ; 1820(11): 1705-14, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22766193

RESUMO

BACKGROUND: Following adhesion to fibronectin neutrophils can develop membrane tubulovesicular extensions (TVEs) that can be 200nm wide and several cell diameters long. TVEs attach neutrophils to the other cells, substrata or bacteria over distance. To understand the physiological significance of TVEs we performed proteome analysis of TVE content in neutrophils plated to fibronectin in the presence of compounds known to induce TVE formation (nitric oxide donor diethylamine NONOate, 4-bromophenacyl bromide, cytochalasin D). METHODS: Development of TVEs was confirmed by scanning electron microscopy. TVEs were disrupted following removal of inductors and biochemical, high-performance liquid chromatography and mass spectrometry investigations were employed to characterize the proteins within the incubation media. RESULTS: TVE disruption released (a) the granular bactericides lactoferrin, lipocalin, myeloperoxidase, cathepsin G and defensins; (b) energy metabolism enzymes; (c) actin cytoskeleton proteins; (d) S100 proteins; and (e) annexin 1. CONCLUSIONS: The data confirm that TVEs represent a means of secretory bactericide trafficking, where the protrusions fuse with the plasma membrane upon neutrophil adhesion or extend from the cell surface when fusion is impaired. It is proposed that proteins abundantly presented in TVE (energy metabolism enzymes, actin cytoskeleton and S100 proteins, annexin 1) play an important role in fusion of TVE with the plasma membrane. GENERAL SIGNIFICANCE: Our study confirms TVEs as neutrophil secretory protrusions that make direct contacts with cells and bacteria over distance. The membrane-packed content and outstanding length of TVEs might allow targeted neutrophil secretion of aggressive bactericides over a long distance without dilution or injury to surrounding tissues.


Assuntos
Atividade Bactericida do Sangue , Membrana Celular/ultraestrutura , Neutrófilos/ultraestrutura , Proteoma/química , Vesículas Secretórias/química , Transporte Biológico , Adesão Celular , Humanos , Microscopia Eletrônica de Varredura , Neutrófilos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA