Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352511

RESUMO

Atypical enteropathogenic Escherichia coli (aEPEC) is a significant cause of diarrhea in developing countries. Some aEPEC strains, including the Brazilian representative strain of serotype O51:H40 called aEPEC 1711-4, can use flagella to attach to, invade, and persist in T84 and Caco-2 intestinal cells. They can even translocate from the gut to extraintestinal sites in a rat model. Although various aspects of the virulence of this strain were studied and the requirement of the T3SS for the efficiency of the invasion process was demonstrated, the expression of the LEE genes during the invasion and intracellular persistence remains unclear. To address this, the expression of flagella and the different LEE operons was evaluated during kinetic experiments of the interaction of aEPEC 1711-4 with enterocytes in vitro. The genome of the strain was also sequenced. The results showed that flagella expression remained unchanged, but the expression of eae and escJ increased during the early interaction and invasion of aEPEC 1711-4 into Caco-2 cells, and there was no change 24 hours post-infection during the persistence period. The number of pedestal-like structures formed on HeLa cells also increased during the 24-hour analysis. No known gene related to the invasion process was identified in the genome of aEPEC 1711-4, which was shown to belong to the global EPEC lineage 10. These findings suggest that LEE components and the intimate adherence promoted by intimin are necessary for the invasion and persistence of aEPEC 1711-4, but the detailed mechanism needs further study.

2.
Braz J Microbiol ; 54(1): 15-28, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36480121

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of urinary tract infection worldwide and a critical bloodstream infection agent. There are more than 50 virulence factors (VFs) related to ExPEC pathogenesis; however, many strains isolated from extraintestinal infections are devoid of these factors. Since opportunistic infections may occur in immunocompromised patients, E. coli strains that lack recognized VFs are considered opportunist, and their virulence potential is neglected. We assessed eleven E. coli strains isolated from bloodstream infections and devoid of the most common ExPEC VFs to understand their pathogenic potential. The strains were evaluated according to their capacity to interact in vitro with human eukaryotic cell lineages (Caco-2, T24, HEK293T, and A549 cells), produce type 1 fimbriae and biofilm in diverse media, resist to human sera, and be lethal to Galleria mellonella. One strain displaying all phenotypic traits was sequenced and evaluated. Ten strains adhered to Caco-2 (colon), eight to T24 (bladder), five to HEK-293 T (kidney), and four to A549 (lung) cells. Eight strains produced type 1 fimbriae, ten adhered to abiotic surfaces, nine were serum resistant, and seven were virulent in the G. mellonella model. Six of the eleven E. coli strains displayed traits compatible with pathogens, five of which were isolated from an immune-competent host. The genome of the EC175 strain, isolated from a patient with urosepsis, reveals that the strain belonged to ST504-A, and serotype O11:H11; harbors thirteen VFs genes, including genes encoding UpaG and yersiniabactin as the only ExPEC VFs identified. Together, our results suggest that the ExPEC pathotype includes pathogens from phylogroups A and B1, which harbor VFs that remain to be uncovered.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Sepse , Infecções Urinárias , Humanos , Escherichia coli/genética , Virulência/genética , Células HEK293 , Infecções por Escherichia coli/microbiologia , Células CACO-2 , Escherichia coli Extraintestinal Patogênica/genética , Sepse/microbiologia , Fatores de Virulência/genética , Infecções Urinárias/microbiologia , Filogenia
3.
Pathogens ; 11(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36558862

RESUMO

Extra-intestinal pathogenic Escherichia coli (ExPEC) may inhabit the human gut microbiota without causing disease. However, if they reach extra-intestinal sites, common cystitis to bloodstream infections may occur, putting patients at risk. To examine the human gut as a source of endogenous infections, we evaluated the E. coli clonal diversity of 18 inpatients' guts and their relationship with strains isolated from urinary tract infection (UTI) in the same hospital. Random amplified polymorphic DNA evaluated the clonal diversity, and the antimicrobial susceptibility was determined by disk diffusion. One isolate of each clone detected was sequenced, and their virulome and resistome were determined. Overall, 177 isolates were screened, among which 32 clones were identified (mean of two clones per patient), with ExPEC strains found in over 75% of the inpatients' guts. Endogenous infection was confirmed in 75% of the cases. ST10, ST59, ST69, ST131, and ST1193 clones and critical mobile drug-resistance encoding genes (blaCTX-M-15, blaOXA-1, blaDHA-1, aac(6')-lb-cr, mcr-1.26, qnrB4, and qnrB19) were identified in the gut of inpatients. The genomic analysis highlighted the diversity of the fecal strains, colonization by lactose-negative E. coli, the high frequency of ExPEC in the gut of inpatients without infections, and the presence of ß-lactamase producing E. coli in the gut of inpatients regardless of the previous antibiotics' usage. Considering that we found more than one ExPEC clone in the gut of several inpatients, surveillance of inpatients' fecal pathogens may prevent UTI caused by E. coli in the hospital and dissemination of risk clones.

4.
Virulence ; 13(1): 1423-1433, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35982607

RESUMO

Hybrid-pathogenic Escherichia coli represent an important group of strains associated with intestinal and extraintestinal infections. Recently, we described strain UPEC-46, a uropathogenic/enteroaggregative E. coli (UPEC/EAEC) strain presenting the aggregative adherence (AA) pattern on bladder and colorectal epithelial cells mediated by aggregate-forming pili (AFP). However, the role of AFP and other uninvestigated putative fimbriae operons in UPEC-46 pathogenesis remains unclear. Thus, this study evaluated the involvement of AFP and other adhesins in uropathogenicity and intestinal colonization using different in vitro and in vivo models. The strain UPEC-46 was able to adhere and invade intestinal and urinary cell lines. A library of transposon mutants also identified the involvement of type I fimbriae (TIF) in the adherence to HeLa cells, in addition to colorectal and bladder cell lines. The streptomycin-treated mouse in vivo model also showed an increased number of bacterial counts in the colon in the presence of AFP and TIF. In the mouse model of ascending urinary tract infection (UTI), AFP was more associated with kidney colonization, while TIF appears to mediate bladder colonization. Results observed in in vivo experiments were also confirmed by electron microscopy (EM) analyses. In summary, the in vitro and in vivo analyses show a synergistic role of AFP and TIF in the adherence and colonization of intestinal and urinary epithelia. Therefore, we propose that hybrid E. coli strains carrying AFP and TIF could potentially cause intestinal and urinary tract infections in the same patient.


Assuntos
Aderência Bacteriana , Infecções por Escherichia coli , Fímbrias Bacterianas , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Escherichia coli/patogenicidade , Infecções por Escherichia coli/microbiologia , Células HeLa , Humanos , Intestinos/microbiologia , Camundongos , Sistema Urinário/microbiologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/patogenicidade
5.
Microorganisms ; 10(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35336220

RESUMO

(1) Background: Pathogenic Escherichia coli are divided into two groups: diarrheagenic (DEC) and extraintestinal pathogenic (ExPEC) E. coli. ExPEC causing urinary tract infections (UTIs) are termed uropathogenic E. coli (UPEC) and are the most common cause of UTIs worldwide. (2) Methods: Here, we characterized 112 UPEC in terms of phylogroup, serotype, the presence of virulence factor-encoding genes, and antimicrobial resistance. (3) Results: The majority of the isolates were assigned into the phylogroup B2 (41.07%), and the serogroups O6 (12.5%) and O25 (8.9%) were the most frequent. Five hybrid UPEC (4.5%), with markers from two DEC pathotypes, i.e., atypical enteropathogenic (aEPEC) and enteroaggregative (EAEC) E. coli, were identified, and designated UPEC/aEPEC (one isolate) and UPEC/EAEC (four isolates), respectively. Three UPEC/EAEC harbored genes from the pap operon, and the UPEC/aEPEC carried ibeA. The highest resistance rates were observed for ampicillin (46.4%) and trimethoprim/sulfamethoxazole (34.8%), while 99.1% of the isolates were susceptible to nitrofurantoin and/or fosfomycin. Moreover, 9.8% of the isolates were identified as Extended Spectrum ß-Lactamase producers, including one hybrid UPEC/EAEC. (4) Conclusion: Our data reinforce that hybrid UPEC/DEC are circulating in the city of Botucatu, Brazil, as uropathogens. However, how and whether these combinations of genes influence their pathogenicity is a question that remains to be elucidated.

6.
Microorganisms ; 10(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35208757

RESUMO

Urinary tract infections (UTI) affect community and healthcare patients worldwide and may have different clinical outcomes. We assessed the phylogenetic origin, the presence of 43 virulence factors (VFs) of diarrheagenic and extraintestinal pathogenic Escherichia coli, and the occurrence of hybrid strains among E. coli isolates from 172 outpatients with different types of UTI. Isolates from phylogroup B2 (46%) prevailed, followed by phylogroups A (15.7%) and B1 (12.2%), with similar phylogenetic distribution in symptomatic and asymptomatic patients. The most frequent VFs according to their functional category were fimA (94.8%), ompA (83.1%), ompT (63.3%), chuA (57.6%), and vat (22%). Using published molecular criteria, 34.3% and 18.0% of the isolates showed intrinsic virulence and uropathogenic potential, respectively. Two strains carried the eae and escV genes and one the aggR gene, which classified them as hybrid strains. These hybrid strains interacted with renal and bladder cells, reinforcing their uropathogenic potential. The frequency of UPEC strains bearing a more pathogenic potential in the outpatients studied was smaller than reported in other regions. Our data contribute to deepening current knowledge about the mechanisms involved in UTI pathogenesis, especially among hybrid UPEC strains, as these could colonize the host's intestine, leading to intestinal infections followed by UTI.

7.
Virulence ; 12(1): 3073-3093, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34923895

RESUMO

Enteroaggregative Escherichia coli (EAEC) comprises an important diarrheagenic pathotype, while uropathogenic E. coli (UPEC) is the most important agent of urinary tract infection (UTI). Recently, EAEC virulence factors have been detected in E. coli strains causing UTI, showing the importance of these hybrid-pathogenic strains. Previously, we detected an E. coli strain isolated from UTI (UPEC-46) presenting characteristics of EAEC, e.g., the aggregative adherence (AA) pattern and EAEC-associated genes (aatA, aap, and pet). In this current study, we analyzed the whole genomic sequence of UPEC-46 and characterized some phenotypic traits. The AA phenotype was observed in cell lineages of urinary and intestinal origin. The production of curli, cellulose, bacteriocins, and Pet toxin was detected. Additionally, UPEC-46 was not capable of forming biofilm using different culture media and human urine. The genome sequence analysis showed that this strain belongs to serotype O166:H12, ST10, and phylogroup A, harbors the tet, aadA, and dfrA/sul resistance genes, and is phylogenetically more related to EAEC strains isolated from human feces. UPEC-46 harbors three plasmids. Plasmid p46-1 (~135 kb) carries some EAEC marker genes and those encoding the aggregate-forming pili (AFP) and its regulator (afpR). A mutation in afpA (encoding the AFP major pilin) led to the loss of pilin production and assembly, and notably, a strongly reduced adhesion to epithelial cells. In summary, the genetic background and phenotypic traits analyzed suggest that UPEC-46 is a hybrid strain (UPEC/EAEC) and highlights the importance of AFP adhesin in the adherence to colorectal and bladder cell lines.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Proteínas de Fímbrias/genética , Humanos , Masculino , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo , alfa-Fetoproteínas
9.
Artigo em Inglês | MEDLINE | ID: mdl-33134184

RESUMO

Hybrid strains of Escherichia coli combine virulence traits of diarrheagenic (DEC) and extraintestinal pathogenic E. coli (ExPEC), but it is poorly understood whether these combined features improve the virulence potential of such strains. We have previously identified a uropathogenic E. coli (UPEC) strain (UPEC 252) harboring the eae gene that encodes the adhesin intimin and is located in the locus of enterocyte effacement (LEE) pathogenicity island. The LEE-encoded proteins allow enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) to form attaching and effacing (A/E) lesions in enterocytes. We sought to characterize UPEC 252 through whole-genome sequencing and phenotypic virulence assays. Genome analysis unveiled that this strain harbors a complete LEE region, with more than 97% of identity comparing to E2348/69 (EPEC) and O157:H7 Sakai (EHEC) prototype strains, which was functional, since UPEC 252 expressed the LEE-encoded proteins EspB and intimin and induced actin accumulation foci in HeLa cells. Phylogenetic analysis performed comparing 1,000 single-copy shared genes clustered UPEC 252 with atypical EPEC strains that belong to the sequence type 10, phylogroup A. Additionally, UPEC 252 was resistant to the bactericidal power of human serum and colonized cells of the urinary (T24 and HEK293-T) and intestinal (Caco-2 and LS174T) tracts. Our findings suggest that UPEC 252 is an atypical EPEC strain that emerges as a hybrid strain (aEPEC/UPEC), which could colonize new niches and potentially cause intestinal and extraintestinal infections.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Uropatogênica , Células CACO-2 , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Células HEK293 , Células HeLa , Humanos , Filogenia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/patogenicidade , Virulência/genética
10.
EcoSal Plus ; 9(1)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32588811

RESUMO

Escherichia albertii is an emerging enteropathogen of humans and many avian species. This bacterium is a close relative of Escherichia coli and has been frequently misidentified as enteropathogenic or enterohemorrhagic E. coli due to their similarity in phenotypic and genetic features, such as various biochemical properties and the possession of a type III secretion system encoded by the locus of enterocyte effacement. This pathogen causes outbreaks of gastroenteritis, and some strains produce Shiga toxin. Although many genetic and phenotypic studies have been published and the genome sequences of more than 200 E. albertii strains are now available, the clinical significance of this species is not yet fully understood. The apparent zoonotic nature of the disease requires a deeper understanding of the transmission routes and mechanisms of E. albertii to develop effective measures to control its transmission and infection. Here, we review the current knowledge of the phylogenic relationship of E. albertii with other Escherichia species and the biochemical and genetic properties of E. albertii, with particular emphasis on the repertoire of virulence factors and the mechanisms of pathogenicity, and we hope this provides a basis for future studies of this important emerging enteropathogen.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia/patogenicidade , Gastroenterite/microbiologia , Filogenia , Animais , Escherichia/genética , Escherichia coli/genética , Infecções por Escherichia coli/transmissão , Genoma Bacteriano , Humanos , Camundongos , Toxina Shiga/biossíntese , Fatores de Virulência
11.
Microorganisms ; 8(6)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486334

RESUMO

Escherichia coli EC121 is a multidrug-resistant (MDR) strain isolated from a bloodstream infection of an inpatient with persistent gastroenteritis and T-zone lymphoma that died due to septic shock. Despite causing an extraintestinal infection, previous studies showed that it did not have the usual characteristics of an extraintestinal pathogenic E. coli. Instead, it belonged to phylogenetic group B1 and harbored few known virulence genes. To evaluate the pathogenic potential of strain EC121, an extensive genome sequencing and in vitro characterization of various pathogenicity-associated properties were performed. The genomic analysis showed that strain EC121 harbors more than 50 complete virulence genetic clusters. It also displays the capacity to adhere to a variety of epithelial cell lineages and invade T24 bladder cells, as well as the ability to form biofilms on abiotic surfaces, and survive the bactericidal serum complement activity. Additionally, EC121 was shown to be virulent in the Galleria mellonella model. Furthermore, EC121 is an MDR strain harboring 14 antimicrobial resistance genes, including blaCTX-M-2. Completing the scenario, it belongs to serotype O154:H25 and to sequence type 101-B1, which has been epidemiologically linked to extraintestinal infections as well as to antimicrobial resistance spread. This study with E. coli strain EC121 shows that clinical isolates considered opportunistic might be true pathogens that go underestimated.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32391284

RESUMO

Enteroaggregative Escherichia coli (EAEC) is an important agent of acute and persistent diarrhea in children and adults worldwide. Here we report a characterization of 220 EAEC isolates, 88.2% (194/220) of which were typical and 11.8% (26/220) were atypical, obtained from diarrheal patients during seven years (2010-2016) of epidemiological surveillance in Brazil. The majority of the isolates were assigned to phylogroups A (44.1%, 97/220) or B1 (21.4%, 47/220). The aggregative adherence (AA) pattern was detected in 92.7% (204/220) of the isolates, with six of them exhibiting AA concomitantly with a chain-like adherence pattern; and agg5A and agg4A were the most common adhesin-encoding genes, which were equally detected in 14.5% (32/220) of the isolates. Each of 12 virulence factor-encoding genes (agg4A, agg5A, pic, aap, aaiA, aaiC, aaiG, orf3, aar, air, capU, and shf) were statistically associated with typical EAEC (P < 0.05). The genes encoding the newly described aggregate-forming pili (AFP) searched (afpB, afpD, afpP, and afpA2), and/or its regulator (afpR), were exclusively detected in atypical EAEC (57.7%, 15/26), and showed a significant association with this subgroup of EAEC (P < 0.001). In conclusion, we presented an extensive characterization of the EAEC circulating in the Brazilian settings and identified the afp genes as putative markers for increasing the efficiency of atypical EAEC diagnosis.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Adulto , Brasil , Criança , Diarreia , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Humanos , Virulência/genética , Fatores de Virulência/genética
13.
Front Cell Infect Microbiol ; 10: 571088, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392102

RESUMO

Diarrhea is one of the main causes of infant mortality worldwide, mainly in the developing world. Among the various etiologic agents, Escherichia albertii is emerging as an important human enteropathogen. E. albertii promote attaching and effacing (AE) lesions due to the presence of the locus of enterocyte effacement (LEE) that encodes a type three secretion system (T3SS), the afimbrial adhesin intimin and its translocated receptor, Tir, and several effector proteins. We previously showed that E. albertii strain 1551-2 invades several epithelial cell lineages by a process that is dependent on the intimin-Tir interaction. To understand the contribution of T3SS-dependent effectors present in E. albertii 1551-2 during the invasion process, we performed a genetic analysis of the LEE and non-LEE genes and evaluated the expression of the LEE operons in various stages of bacterial interaction with differentiated intestinal Caco-2 cells. The kinetics of the ability of the 1551-2 strain to colonize and form AE lesions was also investigated in epithelial HeLa cells. We showed that the LEE expression was constant during the early stages of infection but increased at least 4-fold during bacterial persistence in the intracellular compartment. An in silico analysis indicated the presence of a new tccP/espFU subtype, named tccP3. We found that the encoded protein colocalizes with Tir and polymerized F-actin during the infection process in vitro. Moreover, assays performed with Nck null cells demonstrated that the 1551-2 strain can trigger F-actin polymerization in an Nck-independent pathway, despite the fact that TccP3 is not required for this phenotype. Our study highlights the importance of the T3SS during the invasion process and for the maintenance of E. albertii 1551-2 inside the cells. In addition, this work may help to elucidate the versatility of the T3SS for AE pathogens, which are usually considered extracellular and rarely reach the intracellular environment.


Assuntos
Células Epiteliais , Escherichia , Proteínas de Bactérias , Células CACO-2 , Genômica , Células HeLa , Humanos
14.
Front Microbiol ; 10: 1527, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338081

RESUMO

The intimin protein is the major adhesin involved in the intimate adherence of atypical enteropathogenic Escherichia coli (aEPEC) strains to epithelial cells, but little is known about the structures involved in their early colonization process. A previous study demonstrated that the type III secretion system (T3SS) plays an additional role in the adherence of an Escherichia albertii strain. Therefore, we assumed that the T3SS could be related to the adherence efficiency of aEPEC during the first stages of contact with epithelial cells. To test this hypothesis, we examined the adherence of seven aEPEC strains and their eae (intimin) isogenic mutants in the standard HeLa adherence assay and observed that all wild-type strains were adherent while five isogenic eae mutants were not. The two eae mutant strains that remained adherent were then used to generate the eae/escN double mutants (encoding intimin and the T3SS ATPase, respectively) and after the adherence assay, we observed that one strain lost its adherence capacity. This suggested a role for the T3SS in the initial adherence steps of this strain. In addition, we demonstrated that this strain expressed the T3SS at significantly higher levels when compared to the other wild-type strains and that it produced longer translocon-filaments. Our findings reveal that the T3SS-translocon can play an additional role as an adhesin at the beginning of the colonization process of aEPEC.

15.
J Med Microbiol ; 68(6): 940-951, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31107199

RESUMO

PURPOSE: This study aimed to characterize 82 atypical enteropathogenic Escherichia coli (aEPEC) isolates, obtained from patients with diarrhea in Brazil, regarding their adherence patterns on HeLa cells and attaching and effacing (AE) lesion pathways. METHODOLOGY: The adherence and fluorescence-actin staining (FAS) assays were performed using HeLa cells. AE lesion pathways were determined through the detection of tyrosine residue 474 (Y474) phosphorylation in the Tir protein, after its translocation to host cells, and by PCR assays for tir genotyping and detection of Tir-cytoskeleton coupling protein (tccP) genes. RESULTS: Regarding the adherence pattern, determined in the presence of d-mannose, 12 isolates (14.6 %) showed the localized adherence (LA)-like pattern, 3 (3.7  %) the aggregative adherence pattern and 4 (4.9  %) a hybrid LA/diffuse adherence pattern. In addition, 36 (43.9  %) isolates displayed an undefined adherence, and 26 (31.7  %) were non-adherent (NA), while one (1.2 %) caused cell detachment. Among the 26 NA aEPEC isolates, 11 showed a type 1 pilus-dependent adherence in assays performed without d-mannose, while 15 remained NA. Forty-eight (58.5 %) aEPEC were able to trigger F-actin accumulation underneath adherent bacteria (FAS-positive), which is an important feature of AE lesions. The majority (58.3 %) of these used the Tir-Nck pathway, while 39.6  % may use both Tir-Nck and Tir-TccP pathways to induce AE lesions. CONCLUSION: Our results reveal the diversity of strategies used by aEPEC isolates to interact with and damage epithelial host cells, thereby causing diarrheal diseases.


Assuntos
Aderência Bacteriana , Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno , Actinas/metabolismo , Diarreia/microbiologia , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/isolamento & purificação , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Genótipo , Células HeLa , Humanos , Fenótipo , Fosforilação , Receptores de Superfície Celular/metabolismo
16.
Pathog Dis ; 77(2)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30865776

RESUMO

Escherichia albertii are emerging enteropathogens, whose identification is difficult, as they share biochemical characteristics and some virulence-related genes with diarrheagenic Escherichia coli (DEC). Studies on phylogeny, phenotypic characteristics and potential virulence factors of human E. albertii strains are scarce. In this study, we identified by multiplex PCR five E. albertii among 106 strains isolated from diarrheic children in São Paulo, Brazil, which were previously classified as atypical enteropathogenic E. coli. All strains were investigated regarding their phylogeny, biochemical properties, virulence-related properties, antimicrobial resistance and presence of putative virulence-related genes. All strains belonged to different E. albertii lineages and adhered to and produced attaching and effacing lesions on HeLa cells. Three strains invaded Caco-2 cells, but did not persist intracellularly, and three formed biofilms on polystyrene surfaces. All strains were resistant to few antibiotics and only one carried a self-transmissible resistance plasmid. Finally, among 38 DEC and 18 extraintestinal pathogenic E. coli (ExPEC) virulence-related genes searched, six and three were detected, respectively, with paa and cdtB being found in all strains. Despite the limited number of strains, this study provided additional knowledge on human E. albertii virulence potential, showing that they share important virulence factors with DEC and ExPEC.


Assuntos
Diarreia/epidemiologia , Diarreia/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Escherichia/fisiologia , Fenótipo , Antibacterianos/farmacologia , Biofilmes , Brasil/epidemiologia , Linhagem Celular , Criança , Pré-Escolar , Escherichia/classificação , Escherichia/isolamento & purificação , Escherichia/patogenicidade , Genótipo , Humanos , Mucosa Intestinal , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Sorogrupo , Virulência/genética , Fatores de Virulência/genética
17.
Int J Med Microbiol ; 309(1): 66-72, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30559068

RESUMO

Typical enteropathogenic Escherichia coli strains (tEPEC) cause attaching/effacing lesions in eukaryotic cells and produce the bundle-forming pilus (BFP), which interweaves and aggregates bacteria, resulting in the localized adherence (LA) pattern on eukaryotic cells. Previously, we identified tEPEC strains (serotype O119:H6) that exhibited LA simultaneously with an aggregative adherence (AA)-like pattern (LA/AA-like+). Remarkably, AA is characteristically produced by strains of enteroaggregative E. coli (EAEC), another diarrheagenic E. coli pathovar. In one LA/AA-like + strain (Ec404/03), we identified a conjugative plasmid containing the pil operon, which encodes the Pil fimbriae. Moreover, a pil operon associated with an AA pattern and plasmid transfer had been previously described in the EAEC C1096 strain. In this study, we investigated the occurrence of the two pilS alleles (pilSEc404 and pilSC1096) in tEPEC strains of different serotypes, origins and years of isolation. We also examined the potential relationship of pilS with the AA-like phenotype, its ability to be transferred by conjugation, and occurrence among strains of the other E. coli pathovars. The pilS alleles were found in 90 (55.2%) of 163 tEPEC strains, with pilSEc404 occurring more often (30.7%) than pilSC1096 (25.1%). About 21 tEPEC serotypes carried pilS. The pilS alleles were found in tEPEC strains from Chile, Peru and different Brazilian cities, with the oldest strain being isolated in 1966. No absolute correlation was found between the presence of pilS and the AA-like pattern. Conjugative pilS transfer was detected in 26.2% of pilSEc404+ strains and in 65.1% of pilSC1096+ strains, but only pilSEc404+ transconjugants were AA-like+, thus suggesting that the latter allele might need a different genetic background to express this phenotype. pilS was found in all other E. coli pathovars, where it was most prevalent in enterotoxigenic E. coli. More studies are needed to understand the mechanisms involved in the regulation of Pil expression and production.


Assuntos
Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Fatores de Transcrição/genética , Alelos , Brasil , Chile , Conjugação Genética/genética , Escherichia coli Enteropatogênica/isolamento & purificação , Fímbrias Bacterianas/genética , Células HeLa , Humanos , Óperon , Peru , Plasmídeos , Sorogrupo , Virulência/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-30533858

RESUMO

The number of diarrhea cases caused by atypical enteropathogenic Escherichia coli (aEPEC) has been increasing worldwide. Here, we report the draft whole-genome sequences of 10 aEPEC strains isolated in Brazil. These sequences will provide an important source for future studies concerning aEPEC pathogenicity and genetic markers of potentially virulent strains.

19.
Vet Microbiol ; 227: 45-51, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30473351

RESUMO

Recent studies point atypical enteropathogenic Escherichia coli (aEPEC) to be an important agent in childhood diarrhoea in Brazil. aEPEC are commonly found in various animal species, including dogs. Although the true zoonotic risk remains unknown, some strains recovered from dogs present the same serotypes and carry the same virulence genes implicated in human disease. In this study, we compared the virulence and genetic relationship among a set of aEPEC strains previously isolated from diarrheic faeces from companion dogs and humans. A total of 17 strains, 12 from puppies and five from children, were studied. The strains were assessed for: (i) presence of virulence-associated genes (a total of 31 genes) using PCR assays; (ii) genetic relationship by Random Amplified Polymorphic DNA (RAPD), Multilocus Sequence Typing (MLST) and Pulsed-field Gel Electrophoresis (PFGE); and (iii) adherence pattern in intestinal Caco-2 cells. The occurrence of virulence genes was similar between the canine and human isolates presenting the same serotype. The fimbrial genes ecpA and fimH were the most frequently detected, followed by hcpA, tccP, tccP2, lpfA1, lpfA2, astA and toxB genes. Several nle genes were also detected, with one canine strain (O156:H- / ST327) showing all PAI O-122 genes investigated (efa-1, nleB, nleE and ent/espL2). Canine and human strains of the same serotype were grouped into a single cluster by RAPD and PFGE, in which the ST10 and ST206 were identified. Additionally, most of the strains exhibited a localized adherence-like phenotype when interacting with Caco-2 cells. The results showed that some canine aEPEC strains share virulence genes commonly found in human pathogenic strains. Moreover, strains of the same serotype, isolated from dogs and children, share virulence genes and are phylogenetically close, suggesting a potential zoonotic risk.


Assuntos
Doenças do Cão/transmissão , Escherichia coli Enteropatogênica/isolamento & purificação , Infecções por Escherichia coli/veterinária , Zoonoses/transmissão , Fatores Etários , Animais , Criança , Diarreia/epidemiologia , Diarreia/microbiologia , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia , Cães , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/transmissão , Fezes/microbiologia , Humanos , Tipagem de Sequências Multilocus , Filogenia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Sorogrupo , Virulência , Zoonoses/epidemiologia , Zoonoses/microbiologia
20.
Pathog Dis ; 75(8)2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-28961708

RESUMO

Enteroaggregative Escherichia coli (EAEC) has been recently associated with urinary tract infections (UTI). Since EAEC are found in feces of both diarrheic and asymptomatic individuals, their presence in the intestine may be a source of UTI. In this study, we detected in feces of diarrheic and healthy children a subset of EAEC strains with genetic markers of extraintestinal pathogenic E. coli (ExPEC). MLST grouped these EAEC with ExPEC markers in three main clusters along with prototypes strains of EAEC, uropathogenic E. coli and UTI-causing EAEC. Interestingly, the latter cluster was composed by EAEC with ExPEC markers belonging to phylogroup A and closely related to the uropathogenic EAEC O78:H10 strain. Such attributes suggest that these strains have uropathogenic abilities. Therefore, intestinal carriers of these strains are potentially in risk to develop UTIs.


Assuntos
Diarreia/microbiologia , Escherichia coli/classificação , Fezes/microbiologia , Fatores de Virulência/metabolismo , Criança , Escherichia coli/metabolismo , Humanos , Filogenia , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA