Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 12(1): 16203, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171434

RESUMO

BRCA1 (Breast Cancer 1, early onset) is linked to breast and ovarian cancer predisposition. Still, the risks conferred by a significant portion of BRCA1 variants identified in the population remains unknown. Most of these variants of uncertain significance are missense alterations. However, the functional implications of small in-frame deletions and/or insertions (indels) are also difficult to predict. Our group has previously evaluated the functional impact of 347 missense variants using an extensively validated transcriptional activity assay. Here we show a systematic assessment of 30 naturally occurring in-frame indels located at the C-terminal region of BRCA1. We identified positions sensitive and tolerant to alterations, expanding the knowledge of structural determinants of BRCA1 function. We further designed and assessed the impact of four single codon deletions in the tBRCT linker region and six nonsense variants at the C-terminus end of BRCA1. Amino acid substitutions, deletions or insertions in the disordered region do not significantly impact activity and are not likely to constitute pathogenic alleles. On the other hand, a sizeable fraction of in-frame indels at the BRCT domain significantly impact function. We then use a Bayesian integrative statistical model to derive the probability of pathogenicity for each variant. Our data highlights the importance of assessing the impact of small in-frame indels in BRCA1 to improve risk assessment and clinical decisions for carriers.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Alelos , Substituição de Aminoácidos , Proteína BRCA1/metabolismo , Teorema de Bayes , Feminino , Genes BRCA1 , Predisposição Genética para Doença , Humanos , Mutação de Sentido Incorreto , Neoplasias Ovarianas/genética
2.
Front Pharmacol ; 13: 935995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837282

RESUMO

BRCA1 is a major tumor suppressor that functions in the accurate repair of DNA double-strand breaks via homologous recombination (HR). Nonsense mutations in BRCA1 lead to inactive truncated protein products and are associated with high risk of breast and ovarian cancer. These mutations generate premature termination codons (PTCs). Different studies have shown that aminoglycosides can induce PTC suppression by promoting stop codon readthrough and restoring full-length (FL) protein expression. The use of these compounds has been studied in clinical trials for genetic diseases such as cystic fibrosis and Duchenne muscular dystrophy, with encouraging results. Here we show proof-of-concept data demonstrating that the aminoglycoside G418 can induce BRCA1 PTC readthrough and restore FL protein synthesis and function. We first demonstrate that G418 treatment restores BRCA1 FL protein synthesis in HCC1395, a human breast tumor cell line carrying the R1751X mutation. HCC1395 cells treated with G418 also recover HR DNA repair and restore cell cycle checkpoint activation. A set of naturally occurring BRCA1 nonsense variants encoding different PTCs was evaluated in a GFP C-terminal BRCA1 construct model and BRCA1 PTC readthrough levels vary depending on the stop codon context. Because PTC readthrough could generate FL protein carrying pathogenic missense mutations, variants representing the most probable acquired amino acid substitutions in consequence of readthrough were functionally assessed by a validated transcription activation assay. Overall, this is the first study that evaluates the readthrough of PTC variants with clinical relevance in the breast and ovarian cancer-predisposing gene BRCA1.

3.
Hum Mutat ; 43(10): 1396-1407, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35762214

RESUMO

Chordoma is a rare bone tumor with genetic risk factors largely unknown. We conducted a whole-exome sequencing (WES) analysis of germline DNA from 19 familial chordoma cases in five pedigrees and 137 sporadic chordoma patients and identified 17 rare germline variants in PALB2 and BRCA2, whose products play essential roles in homologous recombination (HR) and tumor suppression. One PALB2 variant showed disease cosegregation in a family with four affected people or obligate gene carrier. Chordoma cases had a significantly increased burden of rare variants in both genes when compared to population-based controls. Four of the six PALB2 variants identified from chordoma patients modestly affected HR function and three of the 11 BRCA2 variants caused loss of function in experimental assays. These results, together with previous reports of abnormal morphology and Brachyury expression of the notochord in Palb2 knockout mouse embryos and genomic signatures associated with HR defect and HR gene mutations in advanced chordomas, suggest that germline mutations in PALB2 and BRCA2 may increase chordoma susceptibility. Our data shed light on the etiology of chordoma and support the previous finding that PARP-1 inhibitors may be a potential therapy for some chordoma patients.


Assuntos
Proteína BRCA2 , Neoplasias da Mama , Cordoma , Proteína do Grupo de Complementação N da Anemia de Fanconi , Animais , Proteína BRCA2/genética , Neoplasias da Mama/genética , Cordoma/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Feminino , Genes BRCA2 , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Camundongos
4.
Genet Med ; 22(3): 622-632, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31636395

RESUMO

PURPOSE: Inherited pathogenic variants in PALB2 are associated with increased risk of breast and pancreatic cancer. However, the functional and clinical relevance of many missense variants of uncertain significance (VUS) identified through clinical genetic testing is unclear. The ability of patient-derived germline missense VUS to disrupt PALB2 function was assessed to identify variants with potential clinical relevance. METHODS: The influence of 84 VUS on PALB2 function was evaluated using a cellular homology directed DNA repair (HDR) assay and VUS impacting activity were further characterized using secondary functional assays. RESULTS: Four (~5%) variants (p.L24S,c.71T>C; p.L35P,c.104T>C; pI944N,c.2831T>A; and p.L1070P,c.3209T>C) disrupted PALB2-mediated HDR activity. These variants conferred sensitivity to cisplatin and a poly(ADP-ribose) polymerase (PARP) inhibitor and reduced RAD51 foci formation in response to DNA damage. The p.L24S and p.L35P variants disrupted BRCA1-PALB2 protein complexes, p.I944N was associated with protein instability, and both p.I944N and p.L1070P mislocalized PALB2 to the cytoplasm. CONCLUSION: These findings show that the HDR assay is an effective method for screening the influence of inherited variants on PALB2 function, that four missense variants impact PALB2 function and may influence cancer risk and response to therapy, and suggest that few inherited PALB2 missense variants disrupt PALB2 function in DNA repair.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Rad51 Recombinase/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Feminino , Fator de Transcrição GATA3/genética , Predisposição Genética para Doença , Humanos , Mutação de Sentido Incorreto/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo de DNA por Recombinação/genética
5.
J Biol Chem ; 294(15): 5980-5992, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30765603

RESUMO

Genetic testing for BRCA1, a DNA repair protein, can identify carriers of pathogenic variants associated with a substantially increased risk for breast and ovarian cancers. However, an association with increased risk is unclear for a large fraction of BRCA1 variants present in the human population. Most of these variants of uncertain clinical significance lead to amino acid changes in the BRCA1 protein. Functional assays are valuable tools to assess the potential pathogenicity of these variants. Here, we systematically probed the effects of substitutions in the C terminus of BRCA1: the N- and C-terminal borders of its tandem BRCT domain, the BRCT-[N-C] linker region, and the α1 and α'1 helices in BRCT-[N] and -[C]. Using a validated transcriptional assay based on a fusion of the GAL4 DNA-binding domain to the BRCA1 C terminus (amino acids 1396-1863), we assessed the functional impact of 99 missense variants of BRCA1. We include the data obtained for these 99 missense variants in a joint analysis to generate the likelihood of pathogenicity for 347 missense variants in BRCA1 using VarCall, a Bayesian integrative statistical model. The results from this analysis increase our understanding of BRCA1 regions less tolerant to changes, identify functional borders of structural domains, and predict the likelihood of pathogenicity for 98% of all BRCA1 missense variants in this region recorded in the population. This knowledge will be critical for improving risk assessment and clinical treatment of carriers of BRCA1 variants.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Modelos Moleculares , Mutação de Sentido Incorreto , Neoplasias Ovarianas , Substituição de Aminoácidos , Proteína BRCA1/química , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Células HEK293 , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade
6.
Cell Cycle ; 16(7): 665-672, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28278048

RESUMO

Double strand break lesions, the most toxic type of DNA damage, are repaired primarily through 2 distinct pathways: homology-directed recombination (HR) and non-homologous end-joining (NHEJ). BRCA1 and 53BP1, 2 proteins containing the BRCT modular domain, play an important role in DNA damage response (DDR) by orchestrating the decision between HR and NHEJ, but the precise mechanisms regarding both pathways are not entirely understood. Previously, our group identified a putative interaction between BRCA1 and BARD1 (BRCA1-associated RING domain 1) and the cyclin-dependent kinase (CDK9). CDK9 is a component of the positive transcription elongation complex and has been implicated in genome integrity maintenance associated with the replication stress response. Here we show that CDK9 interacts with endogenous BRCA1 and BARD1 mediated by their RING finger and BRCT domains, and describe CDK9 ionizing radiation-induced foci (IRIF) formation and its co-localization with BRCA1 in DNA damage sites. Cells lacking CDK9 are characterized by an altered γ-H2AX foci dynamics after DNA damage, a reduced efficiency in HR but not in NHEJ repair, failure to form BRCA1 and RAD51 IRIF and increased sensitivity to genotoxic agents. These data indicate that CDK9 is a player in the DDR and is consistent with its participation in HR pathway by modulating BRCA1 response.


Assuntos
Proteína BRCA1/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Dano ao DNA , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Mutagênicos/toxicidade , Ligação Proteica/efeitos da radiação , RNA Interferente Pequeno/metabolismo , Rad51 Recombinase/metabolismo , Radiação Ionizante , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA