Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS One ; 13(8): e0201747, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071097

RESUMO

Leishmania parasites cause a set of neglected tropical diseases with considerable public health impact, the leishmaniases, which are often fatal if left untreated. Since current treatments for the leishmaniases exhibit high toxicity, low efficacy and prohibitive prices, many laboratories throughout the world are engaged in research for the discovery of novel chemotherapeutics. This entails the necessity of screening large numbers of compounds against the clinically relevant form of the parasite, the obligatory intracellular amastigote, a procedure that in many laboratories is still carried out by manual inspection. To overcome this well-known bottleneck in Leishmania drug development, several studies have recently attempted to automate this process. Here we implemented an image-based high content triage assay for Leishmania which has the added advantages of using primary macrophages instead of macrophage cell lines and of enabling identification of active compounds against parasite species developing both in small individual phagolysosomes (such as L. infantum) and in large communal vacuoles (such as L. amazonensis). The automated image analysis protocol is made available for IN Cell Analyzer systems, and, importantly, also for the open-source CellProfiler software, in this way extending its implementation to any laboratory involved in drug development as well as in other aspects of Leishmania research requiring analysis of in vitro infected macrophages.


Assuntos
Leishmania/citologia , Leishmaniose/diagnóstico por imagem , Macrófagos/parasitologia , Microscopia , Reconhecimento Automatizado de Padrão/métodos , Anfotericina B/farmacologia , Animais , Antiprotozoários/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Fêmur , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Microscopia/métodos , Fagossomos/efeitos dos fármacos , Fagossomos/parasitologia , Fagossomos/patologia , Software , Tíbia , Vacúolos/efeitos dos fármacos , Vacúolos/parasitologia , Vacúolos/patologia
2.
Gene ; 605: 70-80, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28025119

RESUMO

Patagonia's biodiversity has been explored from many points of view, however, skin secretions of native amphibians have not been evaluated for antimicrobial peptide research until now. In this sense, Pleurodema thaul is the first amphibian specie to be studied from this large region of South America. Analysis of cDNA-encoding peptide in skin samples allowed identification of four new antimicrobial peptides. The predicted mature peptides were synthesized and all of them showed weak or null antimicrobial activity against Klebsiella pneumoniae, Staphylococcus aureus and Escherichia coli with the exception of thaulin-1, a cationic 26-residue linear, amphipathic, Gly- and Leu-rich peptide with moderate antimicrobial activity against E. coli (MIC of 24.7µM). AFM and SPR studies suggested a preferential interaction between these peptides and bacterial membranes. Cytotoxicity assays showed that thaulin peptides had minimal effects at MIC concentrations towards human and animal cells. These are the first peptides described for amphibians of the Pleurodema genus. These findings highlight the potential of the Patagonian region's unexplored biodiversity as a source for new molecule discovery.


Assuntos
Proteínas de Anfíbios/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Anuros/metabolismo , Escherichia coli/efeitos dos fármacos , Pele/química , Sequência de Aminoácidos , Proteínas de Anfíbios/biossíntese , Proteínas de Anfíbios/síntese química , Proteínas de Anfíbios/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anuros/genética , Sequência de Bases , Sobrevivência Celular/efeitos dos fármacos , DNA Complementar/genética , DNA Complementar/metabolismo , Eritrócitos/efeitos dos fármacos , Escherichia coli/química , Escherichia coli/crescimento & desenvolvimento , Expressão Gênica , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Secundária de Proteína , Alinhamento de Sequência , Pele/metabolismo , Técnicas de Síntese em Fase Sólida , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
3.
Free Radic Biol Med ; 73: 229-38, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24853758

RESUMO

Trypanothione is a unique and essential redox metabolite of trypanosomatid parasites, the biosynthetic pathway of which is regarded as a promising target for antiparasitic drugs. Synthesis of trypanothione occurs by the consecutive conjugation of two glutathione molecules to spermidine. Both reaction steps are catalyzed by trypanothione synthetase (TRYS), a molecule known to be essential in Trypanosoma brucei. However, other trypanosomatids (including some Leishmania species and Trypanosoma cruzi) potentially express one additional enzyme, glutathionylspermidine synthetase (GSPS), capable of driving the first step of trypanothione synthesis yielding glutathionylspermidine. Because this monothiol can substitute for trypanothione in some reactions, the possibility existed that TRYS was redundant in parasites harboring GSPS. To clarify this issue, the functional relevance of both GSPS and TRYS was investigated in Leishmania infantum (Li). Employing a gene-targeting approach, we generated a gsps(-/-) knockout line, which was viable and capable of replicating in both life cycle stages of the parasite, thus demonstrating the superfluous role of LiGSPS. In contrast, elimination of both LiTRYS alleles was not possible unless parasites were previously complemented with an episomal copy of the gene. Retention of extrachromosomal LiTRYS in the trys(-/-)/+TRYS line after several passages in culture further supported the essentiality of this gene for survival of L. infantum (including its clinically relevant stage), hence ruling out the hypothesis of functional complementation by LiGSPS. Chemical targeting of LiTRYS with a drug-like compound was shown to also lead to parasite death. Overall, this study disqualifies GSPS as a target for drug development campaigns and, by genetic and chemical evidence, validates TRYS as a chemotherapeutic target in a parasite endowed with GSPS and, thus, probably along the entire trypanosomatid lineage.


Assuntos
Amida Sintases/antagonistas & inibidores , Amida Sintases/genética , Antiprotozoários/farmacologia , Leishmania infantum/enzimologia , Amida Sintases/biossíntese , Animais , Técnicas de Inativação de Genes , Glutationa/análogos & derivados , Glutationa/biossíntese , Glutationa/química , Leishmania infantum/genética , Leishmaniose Visceral/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Espermidina/análogos & derivados , Espermidina/biossíntese , Espermidina/química
4.
PLoS Negl Trop Dis ; 7(7): e2317, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936560

RESUMO

BACKGROUND: Paracoccidioides brasiliensis causes paracoccidioidomycosis, one of the most prevalent systemic mycosis in Latin America. Thus, understanding the characteristics of the protective immune response to P. brasiliensis is of interest, as it may reveal targets for disease control. The initiation of the immune response relies on the activation of pattern recognition receptors, among which are TLRs. Both TLR2 and TLR4 have been implicated in the recognition of P. brasiliensis and regulation of the immune response. However, the role of TLR9 during the infection by this fungus remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: We used in vitro and in vivo models of infection by P. brasiliensis, comparing wild type and TLR9 deficient ((-/-)) mice, to assess the contribution of TLR9 on cytokine induction, phagocytosis and outcome of infection. We show that TLR9 recognizes either the yeast form or DNA from P. brasiliensis by stimulating the expression/production of pro-inflammatory cytokines by bone marrow derived macrophages, also increasing their phagocytic ability. We further show that TLR9 plays a protective role early after intravenous infection with P. brasiliensis, as infected TLR9(-/-) mice died at higher rate during the first 48 hours post infection than wild type mice. Moreover, TLR9(-/-) mice presented tissue damage and increased expression of several cytokines, such as TNF-α and IL-6. The increased pattern of cytokine expression was also observed during intraperitoneal infection of TLR9(-/-) mice, with enhanced recruitment of neutrophils. The phenotype of TLR9(-/-) hosts observed during the early stages of P. brasiliensis infection was reverted upon a transient, 48 hours post-infection, neutrophil depletion. CONCLUSIONS/SIGNIFICANCE: Our results suggest that TLR9 activation plays an early protective role against P. brasiliensis, by avoiding a deregulated type of inflammatory response associated to neutrophils that may lead to tissue damage. Thus modulation of TLR9 may be of interest to potentiate the host response against this pathogen.


Assuntos
Inflamação/patologia , Paracoccidioides/imunologia , Paracoccidioidomicose/imunologia , Paracoccidioidomicose/patologia , Receptor Toll-Like 9/imunologia , Animais , Modelos Animais de Doenças , Histocitoquímica , Fígado/patologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sobrevida
5.
PLoS One ; 7(10): e47033, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056569

RESUMO

Recent evidence suggests that Paracoccidioides species have the potential to undergo sexual reproduction, although no sexual cycle has been identified either in nature or under laboratory conditions. In the present work we detected low expression levels of the heterothallic MAT loci genes MAT1-1 and MAT1-2, the α-pheromone (PBα) gene, and the α- and a-pheromone receptor (PREB and PREA) genes in yeast and mycelia forms of several Paracoccidioides isolates. None of the genes were expressed in a mating type dependent manner. Stimulation of P. brasiliensis MAT1-2 strains with the synthetic α-pheromone peptide failed to elicit transcriptional activation of MAT1-2, PREB or STE12, suggesting that the strains tested are insensitive to α-pheromone. In order to further evaluate the biological functionality of the pair α-pheromone and its receptor, we took advantage of the heterologous expression of these Paracoccidioides genes in the corresponding S. cerevisiae null mutants. We show that S. cerevisiae strains heterologously expressing PREB respond to Pbα pheromone either isolated from Paracoccidioides culture supernatants or in its synthetic form, both by shmoo formation and by growth and cell cycle arrests. This allowed us to conclude that Paracoccidioides species secrete an active α-pheromone into the culture medium that is able to activate its cognate receptor. Moreover, expression of PREB or PBα in the corresponding null mutants of S. cerevisiae restored mating in these non-fertile strains. Taken together, our data demonstrate pheromone signaling activation by the Paracoccidioides α-pheromone through its receptor in this yeast model, which provides novel evidence for the existence of a functional mating signaling system in Paracoccidioides.


Assuntos
Proteínas Fúngicas/metabolismo , Paracoccidioides/metabolismo , Receptores de Feromônios/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Paracoccidioides/genética , Receptores de Feromônios/genética
6.
Med Mycol ; 50(7): 768-74, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22493946

RESUMO

Paracoccidioides brasiliensis budding pattern and polymorphic growth were previously shown to be closely linked to the expression of PbCDC42 and to influence the pathogenesis of the fungus. In this work we conducted a detailed morphogenetic evaluation of the yeast-forms of 11 different clinical and environmental P. brasiliensis isolates comprising four phylogenetic lineages (S1, PS2, PS3 and Pb01-like), as well as a PbCDC42 knock-down strain. High variations in the shape and size of mother and bud cells of each isolate were observed but we did not find a characteristic morphologic profile for any of the phylogenetic groups. In all isolates studied, the bud size and shape were demonstrated to be highly dependent on the mother cell. Importantly, we found strong correlations between PbCDC42 expression and both the shape of mother and bud cells and the size of the buds in all isolates and the knock-down strain. Our results suggested that PbCDC42 expression can explain approximately 80% of mother and bud cell shape and 19% of bud cell size. This data support PbCDC42 expression level as being a relevant predictor of P. brasiliensis morphology. Altogether, these findings quantitatively describe the polymorphic nature of the P. brasiliensis yeast form and provide additional support for the key role of PbCDC42 expression on yeast cell morphology.


Assuntos
Paracoccidioides/citologia , Paracoccidioides/enzimologia , Polimorfismo Genético , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Microbiologia Ambiental , Técnicas de Silenciamento de Genes , Humanos , Microscopia , Paracoccidioides/isolamento & purificação , Paracoccidioidomicose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA