RESUMO
Thermal control at small scales is critical for studying temperature-dependent biological systems and microfluidic processes. Concerning this, optical trapping provides a contactless method to remotely study microsized heating sources. This work introduces a birefringent luminescent microparticle of NaLuF4:Nd3+ as a local heater in a liquid system. When optically trapped with a circularly polarized laser beam, the microparticle rotates and heating is induced through multiphonon relaxation of the Nd3+ ions. The temperature increment in the surrounding medium is investigated, reaching a maximum heating of ≈5 °C within a 30 µm radius around the static particle under 51 mW laser excitation at 790 nm. Surprisingly, this study reveals that the particle's rotation minimally affects the temperature distribution, contrary to the intuitive expectation of liquid stirring. The influence of the microparticle rotation on the reduction of heating transfer is analyzed. Numerical simulations confirm that the thermal distribution remains consistent regardless of spinning. Instead, the orientation-dependence of the luminescence process emerges as a key factor responsible for the reduction in heating. The anisotropy in particle absorption and the lag between the orientation of the particle and the laser polarization angle contribute to this effect. Therefore, caution must be exercised when employing spinning polarization-dependent luminescent particles for microscale thermal analysis using rotation dynamics.
RESUMO
Anisotropic hybrid nanostructures stand out as promising therapeutic agents in photothermal conversion-based treatments. Accordingly, understanding local heat generation mediated by light-to-heat conversion of absorbing multicomponent nanoparticles at the single-particle level has forthwith become a subject of broad and current interest. Nonetheless, evaluating reliable temperature profiles around a single trapped nanoparticle is challenging from all of the experimental, computational, and fundamental viewpoints. Committed to filling this gap, the heat generation of an anisotropic hybrid nanostructure is explored by means of two different experimental approaches from which the local temperature is measured in a direct or indirect way, all in the context of hot Brownian motion theory. The results were compared with analytical results supported by the numerical computation of the wavelength-dependent absorption efficiencies in the discrete dipole approximation for scattering calculations, which has been extended to inhomogeneous nanostructures. Overall, we provide a consistent and comprehensive view of the heat generation in optical traps of highly absorbing particles from the viewpoint of the hot Brownian motion theory.
RESUMO
Early-life inflammatory stress increases seizure susceptibility later in life. However, possible sex- and age-specific differences and the associated mechanisms are largely unknown. C57BL/6 mice were bred in house, and female and male pups were injected with lipopolysaccharide (LPS; 100 µg/kg, i.p.) or vehicle control (saline solution) at postnatal day 14 (P14). Seizure threshold was assessed in response to pentylenetetrazol (1% solution, i.v.) in adolescence (â¼P40) and adulthood (â¼P60). We found that adult, but not adolescent, mice treated with LPS displayed â¼34% lower seizure threshold compared with controls. Females and males showed similar increased seizure susceptibility, suggesting that altered brain excitability was age dependent, but not sex dependent. Whole-cell recordings revealed no differences in excitatory synaptic activity onto CA1 pyramidal neurons from control or neonatally inflamed adolescent mice of either sex. However, adult mice of both sexes previously exposed to LPS displayed spontaneous EPSC frequency approximately twice that of controls, but amplitude was unchanged. Although these changes were not associated with alterations in dendritic spines or in the NMDA/AMPA receptor ratio, they were linked to an increased glutamate release probability from Schaffer collateral, but not temporoammonic pathway. This glutamate increase was associated with reduced activity of presynaptic GABAB receptors and was independent of the endocannabinoid-mediated suppression of excitation. Our new findings demonstrate that early-life inflammation leads to long-term increased hippocampal excitability in adult female and male mice associated with changes in glutamatergic synaptic transmission. These alterations may contribute to enhanced vulnerability of the brain to subsequent pathologic challenges such as epileptic seizures.SIGNIFICANCE STATEMENT Adult physiology has been shown to be affected by early-life inflammation. Our data reveal that early-life inflammation increases excitatory synaptic transmission onto hippocampal CA1 pyramidal neurons in an age-dependent manner through disrupted presynaptic GABAB receptor activity on Schaffer collaterals. This hyperexcitability was seen only in adult, and not in adolescent, animals of either sex. The data suggest a maturation process, independent of sex, in the priming action of early-life inflammation and highlight the importance of studying mature brains to reveal cellular changes associated with early-life interventions.
Assuntos
Inflamação/fisiopatologia , Células Piramidais/fisiologia , Convulsões/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Convulsivantes/toxicidade , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamenteRESUMO
Early life, systemic inflammation causes long-lasting changes in behavior. To unmask possible mechanisms associated with this phenomenon, we asked whether the intrinsic membrane properties in hippocampal neurons were altered as a consequence of early life inflammation. C57BL/6 mice were bred in-house and both male and female pups from multiple litters were injected with lipopolysaccharide (LPS; 100 µg/kg, i.p.) or vehicle at postnatal day (P)14, and kept until adolescence (P35-P45) or adulthood (P60-P70), when brain slices were prepared for whole-cell and perforated-patch recordings from CA1 hippocampal pyramidal neurons. In neurons of adult male mice pretreated with LPS, the number of action potentials elicited by depolarizing current pulses was significantly increased compared with control neurons, concomitant with increased input resistance, and a lower action potential threshold. Although these changes were not associated with changes in relevant sodium channel expression or differences in capacitance or dendritic architecture, they were linked to a mechanism involving intracellular chloride overload, revealed through a depolarized GABA reversal potential and increased expression of the chloride transporter, NKCC1. In contrast, no significant changes were observed in neurons of adult female mice pretreated with LPS, nor in adolescent mice of either sex. These data uncover a potential mechanism involving neonatal inflammation-induced plasticity in chloride homeostasis, which may contribute to early life inflammation-induced behavioral alterations.SIGNIFICANCE STATEMENT Early life inflammation results in long-lasting changes in many aspects of adult physiology. In this paper we reveal that a brief exposure to early life peripheral inflammation with LPS increases excitability in hippocampal neurons in a sex- and age-dependent manner through a chloride homeostasis disruption. As this hyperexcitability was only seen in adult males, and not in adult females or adolescent animals of either sex, it raises the possibility of a hormonal interaction with early life inflammation. Furthermore, as neonatal inflammation is a normal feature of early life in most animals, as well as humans, these findings may be very important for the development of animal models of disease that more appropriately resemble the human condition.
Assuntos
Região CA1 Hipocampal/metabolismo , Homeostase/fisiologia , Inflamação/metabolismo , Células Piramidais/metabolismo , Caracteres Sexuais , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Fatores Etários , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Feminino , Homeostase/efeitos dos fármacos , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células Piramidais/efeitos dos fármacos , Fatores SexuaisRESUMO
Emotional dysfunction is common in multiple sclerosis (MS) patients and in mouse models of MS, including experimental autoimmune encephalomyelitis (EAE); however, the etiology of these behaviors is poorly understood. To identify CNS changes associated with these behaviors, we focused on the basolateral amygdala (BLA) because of its central role in the regulation of emotional behavior. Whole-cell recordings were performed in the principal neurons of the BLA in early EAE, before demyelination, T-cell invasion, and motor dysfunction. EAE female mice displayed increased frequency of mEPSCs, with no alteration in amplitude or evoked EPSC paired-pulse ratio compared with controls. We found an increase in the AMPA-NMDA ratio and dendritic spine density, indicating increased numbers of glutamatergic synapses. We saw similar electrophysiological changes in BLA principal neurons after microglia were either inactivated (minocycline) or depleted (Mac1-Saporin) in the BLA. Microglia regulate synapses through pruning, directed by complement protein 3 (C3) expression. C3 was downregulated in the BLA in EAE. Ultrastructural analysis of microglia revealed more complex ramifications and reduced extracellular digestion of cellular elements. We also observed reduced IBA-1 and CD68 staining and lack of proinflammatory cytokine expression in the amygdala. Thus, early EAE is a state of microglial "deactivation" associated with reduced synaptic pruning. This contrasts with the prototypic microglial activation commonly associated with inflammatory CNS disease. Additionally, these data support a role for the acquired immune system to influence both neuronal and microglial function in early CNS autoimmunity.SIGNIFICANCE STATEMENT Microglia help regulate synaptic homeostasis, but there has been little evidence for how this might be important in neuroinflammatory diseases. The data from this study reveal increased synaptic activity and spine density in early stages of experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis) in the basolateral amygdala, a nucleus important in the types of behavioral changes we have previously described. These electrophysiological and morphological effects occurred without significant elevation of local inflammatory cytokines or local demyelination. Unexpectedly, in the context of inflammatory state, we found that microglia were "deactivated." This study provides strong evidence for a link between microglial activity and synaptic function; the conclusions contrast with the generally accepted view that microglia are activated in inflammatory disease.
Assuntos
Complexo Nuclear Basolateral da Amígdala/imunologia , Encefalomielite Autoimune Experimental/imunologia , Ácido Glutâmico/imunologia , Microglia/imunologia , Esclerose Múltipla/imunologia , Neurônios/imunologia , Transmissão Sináptica/imunologia , Animais , Proteínas do Sistema Complemento/imunologia , Citocinas/imunologia , Espinhas Dendríticas/imunologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura , Receptores de AMPA/imunologiaRESUMO
We recently discovered that the antidepressant sertraline is an effective inhibitor of hippocampus presynaptic Na+ channel permeability in vitro and of tonic-clonic seizures in animals in vivo. Several studies indicate that the pro-inflammatory cytokines in the central nervous system are increased in epilepsy and depression. On the other hand inhibition of Na+ channels has been shown to decrease pro-inflammatory cytokines in microglia. Therefore, the possibility that sertraline could overcome the rise in pro-inflammatory cytokine expression induced by seizures has been investigated. For this purpose, IL-1ß and TNF-α mRNA expression was determined by RT-PCR in the hippocampus of rats administered once, or for seven consecutive days with sertraline at a low dose (0.75 mg/kg). The effect of sertraline at doses within the range of 0.75 to 25 mg/kg on the increase in IL-1ß and TNF-α mRNA expression accompanying generalized tonic-clonic seizures, and increase in the pro-inflammatory cytokines expression induced by lipopolysaccharide was also investigated. We found that under basal conditions, a single 0.75 mg/kg sertraline dose decreased IL-1ß mRNA expression, and also TNF-α expression after repeated doses. The increase in IL-1ß and TNF-α expression induced by the convulsive agents and by the inoculation of lipopolysaccharide in the hippocampus was markedly reduced by sertraline also. Present results indicate that a reduction of brain inflammatory processes may contribute to the anti-seizure sertraline action, and that sertraline can be safely and successfully used at low doses to treat depression in epileptic patients.
Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Interleucina-1beta/genética , RNA Mensageiro , Convulsões/genética , Sertralina/farmacologia , Fator de Necrose Tumoral alfa/genética , Animais , Antidepressivos/administração & dosagem , Antidepressivos/farmacologia , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Pentilenotetrazol/efeitos adversos , Ratos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Sertralina/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismoRESUMO
In the present study, the effects of the two classical anti-epileptic drugs, carbamazepine and valproic acid, and the non-classical anti-seizure drug vinpocetine were investigated on the expression of the pro-inflammatory cytokines IL-1ß and TNF-α in the hippocampus of rats by PCR or western blot after the administration of one or seven doses. Next, the effects of the anti-seizure drugs were investigated on the rise in cytokine expression induced by lipopolysaccharides (LPS) inoculation in vivo. To validate our methods, the changes induced by the pro-convulsive agents 4-aminopyridine, pentylenetetrazole and pilocarpine were also tested. Finally, the effect of the anti-seizure drugs on seizures and on the concomitant rise in pro-inflammatory cytokine expression induced by 4-aminopyridine was explored. Results show that vinpocetine and carbamazepine reduced the expression of IL-1ß and TNF-α from basal conditions, and the increase in both pro-inflammatory cytokines induced by LPS. In contrast, valproic acid failed to reduce both the expression of the cytokines from basal conditions and the rise in IL-1ß and TNF-α expression induced by LPS. Tonic-clonic seizures induced either by 4-aminopyridine, pentylenetetrazole or pilocarpine increased the expression of IL-1ß and TNF-α markedly. 4-aminopyridine-induced changes were reduced by all the tested anti-seizure drugs, although valproic acid was less effective. We conclude that the anti-seizure drugs, vinpocetine and carbamazepine, whose mechanisms of action involve a decrease in ion channels permeability, also reduce cerebral inflammation. The mechanism of action of anti-seizure drugs like vinpocetine and carbamazepine involves a decrease in Na(+) channels permeability. We here propose that this mechanism of action also involves a decrease in cerebral inflammation.
Assuntos
Anticonvulsivantes/farmacologia , Carbamazepina/farmacologia , Hipocampo/metabolismo , Interleucina-1beta/biossíntese , Fator de Necrose Tumoral alfa/biossíntese , Ácido Valproico/farmacologia , Alcaloides de Vinca/farmacologia , 4-Aminopiridina/antagonistas & inibidores , 4-Aminopiridina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Convulsivantes/farmacologia , DNA Complementar/biossíntese , DNA Complementar/genética , Epilepsia Tônico-Clônica/induzido quimicamente , Epilepsia Tônico-Clônica/fisiopatologia , Hipocampo/efeitos dos fármacos , Interleucina-1beta/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/antagonistas & inibidoresRESUMO
In order to investigate a potential anticonvulsive action of sertraline (i.p.), its effects on seizures, EEG epileptiform activity and EEG amplitude increases induced by two convulsive agents were evaluated and compared with the effects of carbamazepine. Around 20 min following 4-aminopyridine (4-AP, 2.5 mg/kg, i.p.), tonic-clonic seizures and epileptiform activity were observed in control animals. A single sertraline pre-injection of 2.5 mg/kg, but not of 0.75 mg/kg, prevented these changes to 4-AP. Repeated daily administration of 0.75 mg/kg for one week, however, effectively inhibited the changes induced by 4-AP. The first generalized tonic-clonic seizure and EEG changes in response to pentylenetetrazole (PTZ, 50 mg/kg, i.p.) were observed near the first minute in control animals. Single sertraline doses above 5 mg/kg prevented the PTZ-induced changes. Moreover, a single carbamazepine dose of 25 mg/kg (i.p.), but not of 15 mg/kg, prevented the changes induced by the above convulsive agents. An anti-seizure action of the antidepressant sertraline is strongly suggested by these findings.