Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Nutr Soc ; 83(1): 42-54, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37843435

RESUMO

This review aims to investigate the relationship between the health impact of whole grains mediated via the interaction with intestinal microbiota and intestinal barrier function with special interest on tryptophan metabolism, focusing on the role of the intestinal microbiota and their impact on barrier function. Consuming various types of whole grains can lead to the growth of different microbiota species, which in turn leads to the production of diverse metabolites, including those derived from tryptophan metabolism, although the impact of whole grains on intestinal microbiota composition results remains inconclusive and vary among different studies. Whole grains can exert an influence on tryptophan metabolism through interactions with the intestinal microbiota, and the presence of fibre in whole grains plays a notable role in establishing this connection. The impact of whole grains on intestinal barrier function is closely related to their effects on the composition and activity of intestinal microbiota, and SCFA and tryptophan metabolites serve as potential links connecting whole grains, intestinal microbiota and the intestinal barrier function. Tryptophan metabolites affect various aspects of the intestinal barrier, such as immune balance, mucus and microbial barrier, tight junction complexes and the differentiation and proliferation of epithelial cells. Despite the encouraging discoveries in this area of research, the evidence regarding the effects of whole grain consumption on intestine-related activity remains limited. Hence, we can conclude that we are just starting to understand the actual complexity of the intestinal factors mediating in part the health impacts of whole grain cereals.


Assuntos
Microbioma Gastrointestinal , Grãos Integrais , Humanos , Triptofano , Função da Barreira Intestinal , Intestinos , Grão Comestível/metabolismo
3.
Mol Metab ; 78: 101823, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839774

RESUMO

OBJECTIVE: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most prevalent liver disease globally, yet no therapies are approved. The effects of Escherichia coli Nissle 1917 expressing aldafermin, an engineered analog of the intestinal hormone FGF19, in combination with dietary change were investigated as a potential treatment for MASLD. METHODS: MASLD was induced in C57BL/6J male mice by American lifestyle-induced obesity syndrome diet and then switched to a standard chow diet for seven weeks. In addition to the dietary change, the intervention group received genetically engineered E. coli Nissle expressing aldafermin, while control groups received either E. coli Nissle vehicle or no treatment. MASLD-related plasma biomarkers were measured using an automated clinical chemistry analyzer. The liver steatosis was assessed by histology and bioimaging analysis using Fiji (ImageJ) software. The effects of the intervention in the liver were also evaluated by RNA sequencing and liquid-chromatography-based non-targeted metabolomics analysis. Pathway enrichment studies were conducted by integrating the differentially expressed genes from the transcriptomics findings with the metabolites from the metabolomics results using Ingenuity pathway analysis. RESULTS: After the intervention, E. coli Nissle expressing aldafermin along with dietary changes reduced body weight, liver steatosis, plasma aspartate aminotransferase, and plasma cholesterol levels compared to the two control groups. The integration of transcriptomics with non-targeted metabolomics analysis revealed the downregulation of amino acid metabolism and related receptor signaling pathways potentially implicated in the reduction of hepatic steatosis and insulin resistance. Moreover, the downregulation of pathways linked to lipid metabolism and changes in amino acid-related pathways suggested an overall reduction of oxidative stress in the liver. CONCLUSIONS: These data support the potential for using engineered microbial therapeutics in combination with dietary changes for managing MASLD.


Assuntos
Escherichia coli , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Escherichia coli/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta , Redes e Vias Metabólicas , Aminoácidos/metabolismo
4.
J Nutr Biochem ; 115: 109307, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868506

RESUMO

Non-alcoholic fatty liver disease (NAFLD) pathogenesis remains poorly understood due to the complex metabolic and inflammatory changes in the liver. This study aimed to elucidate hepatic events related to inflammation and lipid metabolism and their linkage with metabolic alterations during NAFLD in American lifestyle-induced obesity syndrome (ALIOS) diet-fed mice. Forty-eight C57BL/6J male mice were fed with ALIOS diet (n=24) or control chow diet (n=24) for 8, 12, and 16 weeks. At the end of each timepoint, eight mice were sacrificed where plasma and liver were collected. Hepatic fat accumulation was followed using magnetic resonance imaging and confirmed with histology. Further, targeted gene expression and non-targeted metabolomics analysis were conducted. Our results showed higher hepatic steatosis, body weight, energy consumption, and liver mass in ALIOS diet-fed mice compared to control mice. ALIOS diet altered expression of genes related to inflammation (Tnfa and IL-6) and lipid metabolism (Cd36, Fasn, Scd1, Cpt1a, and Ppara). Metabolomics analysis indicated decrease of lipids containing polyunsaturated fatty acids such as LPE(20:5) and LPC(20:5) with increase of other lipid species such as LPI(16:0) and LPC(16:2) and peptides such as alanyl-phenylalanine and glutamyl-arginine. We further observed novel correlations between different metabolites including sphingolipid, lysophospholipids, peptides, and bile acid with inflammation, lipid uptake and synthesis. Together with the reduction of antioxidant metabolites and gut microbiota-derived metabolites contribute to NAFLD development and progression. The combination of non-targeted metabolomics with gene expression in future studies can further identify key metabolic routes during NAFLD which could be the targets of potential novel therapeutics.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Obesidade/metabolismo , Metabolismo dos Lipídeos/genética , Inflamação/metabolismo , Lipídeos , Expressão Gênica
5.
Comput Struct Biotechnol J ; 21: 1785-1796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915382

RESUMO

Zearalenone (ZEA), a secondary metabolite of Fusarium fungi found in cereal-based foods, promotes the growth of colon, breast, and prostate cancer cells in vitro. However, the lack of animal studies hinders a deeper mechanistic understanding of the cancer-promoting effects of ZEA. This study aimed to determine the effect of ZEA on colon cancer progression and its underlying mechanisms. Through integrative analyses of transcriptomics, metabolomics, metagenomics, and host phenotypes, we investigated the impact of a 4-week ZEA intervention on colorectal cancer in xenograft mice. Our results showed a twofold increase in tumor weight with the 4-week ZEA intervention. ZEA exposure significantly increased the mRNA and protein levels of BEST4, DGKB, and Ki67 and the phosphorylation levels of ERK1/2 and AKT. Serum metabolomic analysis revealed that the levels of amino acids, including histidine, arginine, citrulline, and glycine, decreased significantly in the ZEA group. Furthermore, ZEA lowered the alpha diversity of the gut microbiota and reduced the abundance of nine genera, including Tuzzerella and Rikenella. Further association analysis indicated that Tuzzerella was negatively associated with the expression of BEST4 and DGKB genes, serum uric acid levels, and tumor weight. Additionally, circulatory hippuric acid levels positively correlated with tumor weight and the expression of oncogenic genes, including ROBO3, JAK3, and BEST4. Altogether, our results indicated that ZEA promotes colon cancer progression by enhancing the BEST4/AKT/ERK1/2 pathway, lowering circulatory amino acid concentrations, altering gut microbiota composition, and suppressing short chain fatty acids production.

7.
Commun Biol ; 5(1): 172, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217713

RESUMO

Domesticated horses live under different conditions compared with their extinct wild ancestors. While housed, medicated and kept on a restricted source of feed, the microbiota of domesticated horses is hypothesized to be altered. We assessed the fecal microbiome of 57 domestic and feral horses from different locations on three continents, observing geographical differences. A higher abundance of eukaryota (p < 0.05) and viruses (p < 0.05) and lower of archaea (p < 0.05) were found in feral animals when compared with domestic ones. The abundance of genes coding for microbe-produced enzymes involved in the metabolism of carbohydrates was significantly higher (p < 0.05) in feral animals regardless of the geographic origin. Differences in the fecal resistomes between both groups of animals were also noted. The domestic/captive horse microbiomes were enriched in genes conferring resistance to tetracycline, likely reflecting the use of this antibiotic in the management of these animals. Our data showed an impoverishment of the fecal microbiome in domestic horses with diet, antibiotic exposure and hygiene being likely drivers. The results offer a view of the intestinal microbiome of horses and the impact of domestication or captivity, which may uncover novel targets for modulating the microbiome of horses to enhance animal health and well-being.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Animais Selvagens , Domesticação , Fezes , Microbioma Gastrointestinal/genética , Cavalos
8.
Adv Nutr ; 13(2): 633-651, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34596662

RESUMO

Food allergy (FA) affects the quality of life of millions of people worldwide and presents a significant psychological and financial burden for both national and international public health. In the past few decades, the prevalence of allergic disease has been on the rise worldwide. Identified risk factors for FA include family history, mode of delivery, variations in infant feeding practices, prior diagnosis of other atopic diseases such as eczema, and social economic status. Identifying reliable biomarkers that predict the risk of developing FA in early life would be valuable in both preventing morbidity and mortality and by making current interventions available at the earliest opportunity. There is also the potential to identify new therapeutic targets. This narrative review provides details on the genetic, epigenetic, dietary, and microbiome influences upon the development of FA and synthesizes the currently available data indicating potential biomarkers. Whereas there is a large body of research evidence available within each field of potential risk factors, there is a very limited number of studies that span multiple methodological fields, for example, including immunology, microbiome, genetic/epigenetic factors, and dietary assessment. We recommend that further collaborative research with detailed cohort phenotyping is required to identify biomarkers, and whether these vary between at-risk populations and the wider population. The low incidence of oral food challenge-confirmed FA in the general population, and the complexities of designing nutritional intervention studies will provide challenges for researchers to address in generating high-quality, reliable, and reproducible research findings.


Assuntos
Hipersensibilidade Alimentar , Qualidade de Vida , Lactente , Humanos , Fatores de Risco , Biomarcadores , Imunoglobulina E
9.
Nutr Rev ; 80(6): 1648-1663, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-34741520

RESUMO

Cereal grains are the main dietary source of energy, carbohydrates, and plant proteins world-wide. Currently, only 41% of grains are used for human consumption, and up to 35% are used for animal feed. Cereals have been overlooked as a source of environmentally sustainable and healthy plant proteins and could play a major role in transitioning towards a more sustainable food system for healthy diets. Cereal plant proteins are of good nutritional quality, but lysine is often the limiting amino acid. When consumed as whole grains, cereals provide health-protecting components such as dietary fiber and phytochemicals. Shifting grain use from feed to traditional foods and conceptually new foods and ingredients could improve protein security and alleviate climate change. Rapid development of new grain-based food ingredients and use of grains in new food contexts, such as dairy replacements and meat analogues, could accelerate the transition. This review discusses recent developments and outlines future perspectives for cereal grain use.


Assuntos
Fibras na Dieta , Grão Comestível , Fibras na Dieta/análise , Grão Comestível/química , Humanos , Valor Nutritivo , Proteínas de Plantas , Grãos Integrais
10.
Nutrients ; 13(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34579012

RESUMO

One of the focuses of non-alcoholic fatty liver disease (NAFLD) treatment is exercise. Randomized controlled trials investigating the effects of exercise without dietary changes on NAFLD-related clinical parameters (liver parameters, lipid metabolism, glucose metabolism, gut microbiota, and metabolites) were screened using the PubMed, Scopus, Web of Science, and Cochrane databases on 13 February 2020. Meta-analyses were performed on 10 studies with 316 individuals who had NAFLD across three exercise regimens: aerobic exercise, resistance training, and a combination of both. No studies investigating the role of gut microbiota and exercise in NAFLD were found. A quality assessment via the (RoB)2 tool was conducted and potential publication bias, statistical outliers, and influential cases were identified. Overall, exercise without significant weight loss significantly reduced the intrahepatic lipid (IHL) content (SMD: -0.76, 95% CI: -1.04, -0.48) and concentrations of alanine aminotransaminase (ALT) (SMD: -0.52, 95% CI: -0.90, -0.14), aspartate aminotransaminase (AST) (SMD: -0.68, 95% CI: -1.21, -0.15), low-density lipoprotein cholesterol (SMD: -0.34, 95% CI: -0.66, -0.02), and triglycerides (TG) (SMD: -0.59, 95% CI: -1.16, -0.02). The concentrations of high-density lipoprotein cholesterol, total cholesterol (TC), fasting glucose, fasting insulin, and glycated hemoglobin were non-significantly altered. Aerobic exercise alone significantly reduced IHL, ALT, and AST; resistance training alone significantly reduced TC and TG; a combination of both exercise types significantly reduced IHL. To conclude, exercise overall likely had a beneficial effect on alleviating NAFLD without significant weight loss. The study was registered at PROSPERO: CRD42020221168 and funded by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 813781.


Assuntos
Terapia por Exercício/métodos , Exercício Físico/fisiologia , Hepatopatia Gordurosa não Alcoólica/terapia , Microbioma Gastrointestinal , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Treinamento Resistido , Resultado do Tratamento
11.
Healthcare (Basel) ; 9(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34442141

RESUMO

Plant-derived protease inhibitors (PI), such as Bowman-Birk inhibitors and Kunitz-type inhibitors, have been suggested to negatively affect dietary protein digestion by blocking the activity of trypsin and chymotrypsin in the human gastrointestinal system. In addition, some PIs may possess proinflammatory activities. However, there is also scientific evidence on some beneficial effects of PIs, for example, gut-related anti-inflammatory and chemopreventive activities in vitro and in vivo. Some PIs are sensitive to processing and digestion; thus, their survival is an important aspect when considering their positive and negative bioactivities. The aim of this review was to evaluate the relevance of PIs in protein digestion in humans and to discuss the potential of PIs from whole foods and as purified compounds in decreasing symptoms of bowel-related conditions. Based on the reviewed literature, we concluded that while the complex interactions affecting plant protein digestibility and bioavailability remain unclear, PI supplements could be considered for targeted purposes to mitigate inflammation and gastric pain.

12.
Microorganisms ; 9(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200306

RESUMO

Adhesion to intestinal mucus is the first step for microbiota colonization in early life. Polyamines are polycations with important physiological functions in both procaryotic and eucaryotic cells. However, their role in intestinal mucus adhesion is not known. The objective of the present study was to evaluate whether exogenous polyamines (putrescine, spermidine, spermine, and their combination) would alter the adhesive properties of Lacticaseibacillus rhamnosus GG (LGG), Bifidobacterium animalis subs. lactis Bb12, Cronobacter sakazakii, and Escherichia coli. Human intestinal mucus was isolated from healthy infants (0-6-month-old and 6-12-month-old) and healthy adults (25-52 years old). Spermidine significantly increased Bb12 adhesion (p < 0.05) in the mucus of infants (0-6 months) but reduced the adhesion of LGG in adult mucus (p < 0.05) with no significant effect in any of the infant groups. Spermine was more effective than polyamine combinations in reducing C. sakazakii (p < 0.05) adhesion in early infant mucus (0-6 months). The adhesion ability of E. coli remained unaffected by exogenous polyamines at any age in the concentrations tested. Our data suggest that polyamines may modulate the bacterial adhesion to mucus depending on the bacterial strain and depending at what age the mucus has been generated.

13.
Microorganisms ; 9(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800493

RESUMO

The development of the infant gut microbiota is initiated during pregnancy and continued through early life and childhood, guided by the immediate environment of the child. Our aim was to characterize the shared microbiota between dogs and children as well as to determine whether introduction to dogs of a dog-specific probiotic combination modifies the transfer process. We studied 31 children from allergic families with pet dog(s) and 18 control families without a dog. Altogether 37 dogs were randomized for a 4-week period in a double-blind design to receive canine-derived probiotic product containing a mixture of L. fermentum, L. plantarum, and L. rhamnosus, or placebo. Fecal samples from children and dogs were taken before and after the treatment. Distinctive gut microbiota composition was observed in children with dogs compared to those without a dog, characterized by higher abundance of Bacteroides and short-chain fatty acid producing bacteria such as Ruminococcus and Lachnospiraceae. Probiotic intervention in dogs had an impact on the composition of the gut microbiota in both dogs and children, characterized by a reduction in Bacteroides. We provide evidence for a direct effect of home environment and household pets on children microbiota and document that modification of dog microbiota by specific probiotics is reflected in children's microbiota.

14.
Environ Pollut ; 266(Pt 1): 115108, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32768925

RESUMO

Controversial glyphosate-based herbicides (GBHs) are the most frequently used herbicides globally. GBH residues in the wild, in animal and human food may expose non-target organisms to health risks, yet the developmental and cumulative effects of GBHs on physiology and reproduction remain poorly understood. We present the first long-term study on the effects of subtoxic GBH exposure (160 mg/kg) on multiple key physiological biomarkers (cellular oxidative status and neurotransmitters), gut microbiome, reproductive hormones, and reproduction in an avian model. We experimentally exposed in Japanese quail females and males (Coturnix japonica) to GBHs and respective controls from the age of 10 days-52 weeks. GBH exposure decreased hepatic activity of an intracellular antioxidant enzyme (catalase), independent of sex, but did not influence other intracellular oxidative stress biomarkers or neurotransmitter enzyme (acetylcholinesterase). GBH exposure altered overall gut microbiome composition, especially at a younger age and in females, and suppressed potentially beneficial microbes at an early age. Many of the microbial groups increased in frequency from 12 to 28 weeks under GBH exposure. GBH exposure decreased male testosterone levels both at sexual maturity and at 52 weeks of exposure, but did not clearly influence reproduction in either sex (maturation, testis size or egg production). Future studies are needed to characterize the effects on reproductive physiology in more detail. Our results suggest that cumulative GBH exposure may influence health and reproduction-related traits, which is important in predicting their effects on wild populations and global poultry industry.


Assuntos
Microbioma Gastrointestinal , Herbicidas , Animais , Antioxidantes , Coturnix , Feminino , Glicina/análogos & derivados , Humanos , Masculino , Glifosato
15.
Nutrients ; 12(4)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276384

RESUMO

In order to support the multiple levels of sustainable development, the nutritional quality of plant-based protein sources needs to be improved by food technological means. Microbial fermentation is an ancient food technology, utilizing dynamic populations of microorganisms and possessing a high potential to modify chemical composition and cell structures of plants and thus to remove undesirable compounds and to increase bioavailability of nutrients. In addition, fermentation can be used to improve food safety. In this review, the effects of fermentation on the protein digestibility and micronutrient availability in plant-derived raw materials are surveyed. The main focus is on the most important legume, cereal, and pseudocereal species (Cicer arietinum, Phaseolus vulgaris, Vicia faba, Lupinus angustifolius, Pisum sativum, Glycine max; Avena sativa, Secale cereale, Triticum aestivum, Triticum durum, Sorghum bicolor; and Chenopodium quinoa, respectively) of the agrifood sector. Furthermore, the current knowledge regarding the in vivo health effects of fermented foods is examined, and the critical points of fermentation technology from the health and food safety point of view are discussed.


Assuntos
Alimentos Fermentados/microbiologia , Tecnologia de Alimentos/métodos , Valor Nutritivo , Proteínas de Vegetais Comestíveis/farmacocinética , Desenvolvimento Sustentável , Disponibilidade Biológica , Fermentação , Humanos
16.
FEMS Microbiol Lett ; 367(6)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32188977

RESUMO

Here, we examined whether glyphosate affects the microbiota of herbivores feeding on non-target plants. Colorado potato beetles (Leptinotarsa decemlineata) were reared on potato plants grown in pots containing untreated soil or soil treated with glyphosate-based herbicide (GBH). As per the manufacturer's safety recommendations, the GBH soil treatments were done 2 weeks prior to planting the potatoes. Later, 2-day-old larvae were introduced to the potato plants and then collected in two phases: fourth instar larvae and adults. The larvae's internal microbiota and the adults' intestinal microbiota were examined by 16S rRNA gene sequencing. The beetles' microbial composition was affected by the GBH treatment and the differences in microbial composition between the control and insects exposed to GBH were more pronounced in the adults. The GBH treatment increased the relative abundance of Agrobacterium in the larvae and the adults. This effect may be related to the tolerance of some Agrobacterium species to glyphosate or to glyphosate-mediated changes in potato plants. On the other hand, the relative abundances of Enterobacteriaceae, Rhodobacter, Rhizobium and Acidovorax in the adult beetles and Ochrobactrum in the larvae were reduced in GBH treatment. These results demonstrate that glyphosate can impact microbial communities associated with herbivores feeding on non-target crop plants.


Assuntos
Bactérias/efeitos dos fármacos , Besouros/microbiologia , Glicina/análogos & derivados , Microbiota/efeitos dos fármacos , Animais , Bactérias/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Glicina/farmacologia , Herbicidas/farmacologia , Larva/microbiologia , RNA Ribossômico 16S/genética , Solanum tuberosum/parasitologia , Glifosato
17.
Annu Rev Nutr ; 39: 267-290, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31433738

RESUMO

According to the developmental origins of health and disease hypothesis, our health is determined by events experienced in utero and during early infancy. Indeed, both our prenatal and postnatal nutrition conditions have an impact on the initial architecture and activity of our microbiota. Recent evidence has underlined the importance of the composition of the early gut microbiota in relation to malnutrition, whether it be undernutrition or overnutrition, that is, in terms of both stunted and overweight development. It remains unclear how early microbial contact is linked to the risk of disease, as well as whether alterations in the microbiome underlie the pathogenesis of malnutrition or are merely the end result of it, which indicates that thequestion of causality must urgently be answered. This review provides information on the complex interaction between the microbiota and nutrition during the first 1,000 days of life, taking into account the impact of both undernutrition and overnutrition on the microbiota and on infants' health outcomes in the short- and long-term.


Assuntos
Microbioma Gastrointestinal , Transtornos da Nutrição do Lactente , Feminino , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal
18.
Nutrients ; 11(4)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013719

RESUMO

Sports nutrition products are developed and targeted mainly for athletes to improve their nutrient intake, performance, and muscle growth. The fastest growing consumer groups for these products are recreational sportspeople and lifestyle users. Although athletes may have elevated physiological protein requirements and they may benefit from dietary supplements, the evidence regarding the role of dietary protein and supplements in the nutrition of recreational sportspeople and sedentary populations is somewhat complex and contradictory. In high-protein diets, more undigested protein-derived constituents end up in the large intestine compared to moderate or low-protein diets, and hence, more bacterial amino acid metabolism takes place in the colon, having both positive and negative systemic and metabolic effects on the host. The aim of the present review is to summarize the impact of the high-protein products and diets on nutrition and health, in sportspeople and in sedentary consumers. We are opening the debate about the current protein intake recommendations, with an emphasis on evidence-based effects on intestinal microbiota and personalized guidelines regarding protein and amino acid supplementation in sportspeople and lifestyle consumers.


Assuntos
Proteínas Alimentares/farmacologia , Suplementos Nutricionais , Exercício Físico , Microbioma Gastrointestinal/efeitos dos fármacos , Estado Nutricional , Comportamento Sedentário , Esportes , Aminoácidos/administração & dosagem , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Digestão , Humanos , Intestino Grosso/efeitos dos fármacos , Intestino Grosso/metabolismo , Intestino Grosso/microbiologia , Recomendações Nutricionais , Fenômenos Fisiológicos da Nutrição Esportiva
19.
Adv Exp Med Biol ; 1125: 3-24, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30680645

RESUMO

The data obtained in prior studies suggest that early microbial exposition begins prior to conception and gestation. Given that the host-microbe interaction is shaped by the immune system response, it is important to understand the key immune system-microbiota relationship during the period from conception to the first years of life. The present work summarizes the available evidence concerning early microbiota exposure within the male and the female reproductive tracts at the point of conception and during gestation, focusing on the potential impact on infant development during the first 1000 days of life. Furthermore, we conclude that some dietary strategies including specific probiotics could become potentially valuable tools to modulate the gut microbiota during this early critical window of opportunity for targeted health outcomes throughout the entire lifespan.


Assuntos
Microbioma Gastrointestinal/fisiologia , Sistema Imunitário , Pré-Escolar , Dieta , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Probióticos
20.
Nutr Rev ; 76(Suppl 1): 29-39, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452698

RESUMO

In the modern food technology era, one of the aims of food safety and quality is to eliminate or reduce the number of microorganisms in food. This may now be changing. In particular, the importance of live microorganisms as beneficial food constituents is now being recognized. Microorganisms present in food that contribute to the human diet include not only viable bacteria but also metabolites and bioactive components. Yogurt is one of the most biologically active foods consumed by humans. It is an excellent source of proteins, vitamins, and minerals. Additionally, the nutritional value is especially high relative to cost. Potential nutritional benefits are also associated with the ingestion of the bacteria that are ordinarily present at the time of consumption. Thus, yogurt serves as a major source of live bacteria in the human diet, as well as a delivery vehicle for added probiotic bacteria. Yogurt may provide a simple and affordable solution for enhancing the nutritional value of the diet, including the intake of live bacteria and their metabolites. A further benefit may be obtained when yogurt is used as a carrier for specific probiotic bacteria and/or prebiotic compounds. These factors suggest that yogurt could have a more visible role in food-based dietary guidelines.


Assuntos
Política Nutricional , Iogurte/microbiologia , Humanos , Valor Nutritivo , Prebióticos , Probióticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA