Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38036032

RESUMO

BACKGROUND: The study of the cortical functional network properties in schizophrenia (SZ) may benefit from the use of graph theory parameters applied to high-density electroencephalography (EEG). Connectivity Strength (CS) assesses global synchrony of the network, and Shannon Graph Complexity (SGC) summarizes the network distribution of link weights and allows distinguishing between primary and secondary pathways. Their joint use may help in understanding the underpinnings of the functional network hyperactivation and task-related hypomodulation previously described in psychoses. METHODS: We used 64-sensor EEG recordings during a P300 oddball task in 128 SZ patients (96 chronic, CR, and 32 first episodes, FE), as well as 46 bipolar disorder (BD) patients, and 92 healthy controls (HC). Pre-stimulus and modulation (task-response minus pre-stimulus windows values) of CS and SGC were assessed in the theta band (4-8 Hz) and the broadband (4-70 Hz). RESULTS: Compared to HC, SZ patients (CR and FE) showed significantly higher pre-stimulus CS values in the broadband, and both SZ and BD patients showed lower theta-band CS modulation. SGC modulation values, both theta-band and broadband, were also abnormally reduced in CR patients. Statistically significant relationships were found in the theta band between SGC modulation and both CS pre-stimulus and modulation values in patients. CS altered measures in patients were additionally related to their cognitive outcome and negative symptoms. A primary role of antipsychotics in these results was ruled out. CONCLUSIONS: Our results linking SGC and CS alterations in psychotic patients supported a hyperactive and hypomodulatory network mainly involving connections in secondary pathways.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Humanos , Encéfalo , Eletroencefalografia/métodos
3.
IEEE/ACM Trans Comput Biol Bioinform ; 20(6): 3660-3668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37647193

RESUMO

Sepsis is among the most common causes of death in intensive care units. Septic shock is a type of circulatory shock that shows signs and symptoms that are similar to non-septic shock. Despite the impact of shock on patients and the economic burden, knowledge of the pathophysiology of septic shock is scarce. In this context, weighted gene co-expression network analysis can help to elucidate the molecular mechanisms of this condition. The gene expression dataset used in this study was downloaded from the Gene Expression Omnibus, which contains 80 patients with septic shock, 33 patients with non-septic shock, and 15 healthy controls. Our novel analysis revealed five gene modules specific for patients with septic shock and three specific gene modules for patients with non-septic shock. Interestingly, genes related to septic shock were mainly involved in the immune system and endothelial cells, while genes related to non-septic shock were primarily associated with endothelial cells. Together, the results revealed the specificity of the genes related to the immune system in septic shock. The novel approach developed here showed its potential to identify critical pathways for the occurrence and progression of these conditions while offering new treatment strategies and effective therapies.


Assuntos
Sepse , Choque Séptico , Humanos , Choque Séptico/genética , Choque Séptico/metabolismo , Choque Séptico/terapia , Redes Reguladoras de Genes/genética , Células Endoteliais/metabolismo , Sepse/genética , Sepse/diagnóstico , Sepse/terapia , Perfilação da Expressão Gênica
4.
Commun Biol ; 6(1): 757, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474587

RESUMO

Complete locked-in syndrome (CLIS) resulting from late-stage amyotrophic lateral sclerosis (ALS) is characterised by loss of motor function and eye movements. The absence of behavioural indicators of consciousness makes the search for neuronal correlates as possible biomarkers clinically and ethically urgent. EEG-based measures of brain dynamics such as power-law exponent (PLE) and Lempel-Ziv complexity (LZC) have been shown to have explanatory power for consciousness and may provide such neuronal indices for patients with CLIS. Here, we validated PLE and LZC (calculated in a dynamic way) as benchmarks of a wide range of arousal states across different reference states of consciousness (e.g., awake, sleep stages, ketamine, sevoflurane). We show a tendency toward high PLE and low LZC, with high intra-subject fluctuations and inter-subject variability in a cohort of CLIS patients with values graded along different arousal states as in our reference data sets. In conclusion, changes in brain dynamics indicate altered arousal in CLIS. Specifically, PLE and LZC are potentially relevant biomarkers to identify or diagnose the arousal level in CLIS and to determine the optimal time point for treatment, including communication attempts.


Assuntos
Síndrome do Encarceramento , Humanos , Eletroencefalografia/métodos , Encéfalo/fisiologia , Vigília , Biomarcadores
5.
J Neural Eng ; 20(3)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37164002

RESUMO

Objective.Brain connectivity networks are usually characterized in terms of properties coming from the complex network theory. Using new measures to summarize the attributes of functional connectivity networks can be an important step for their better understanding and characterization, as well as to comprehend the alterations associated with neuropsychiatric and neurodegenerative disorders. In this context, the main objective of this study was to introduce a novel methodology to evaluate network robustness, which was subsequently applied to characterize the brain activity in the Alzheimer's disease (AD) continuum.Approach.Functional connectivity networks were built using 478 electroencephalographic and magnetoencephalographic resting-state recordings from three different databases. These functional connectivity networks computed in the conventional frequency bands were modified simulating an iterative attack procedure using six different strategies. The network changes caused by these attacks were evaluated by means of Spearman's correlation. The obtained results at the conventional frequency bands were aggregated in a correlation surface, which was characterized in terms of four gradient distribution properties: mean, variance, skewness, and kurtosis.Main results.The new proposed methodology was able to consistently quantify network robustness. Our results showed statistically significant differences in the inherent ability of the network to deal with attacks (i.e. differences in network robustness) between controls, mild cognitive impairment subjects, and AD patients for the three different databases. In addition, we found a significant correlation between mini-mental state examination scores and the changes in network robustness.Significance.To the best of our knowledge, this is the first study which assesses the robustness of the functional connectivity network in the AD continuum. Our findings consistently evidence the loss of network robustness as the AD progresses for the three databases. Furthermore, the changes in this complex network property may be related with the progressive deterioration in brain functioning due to AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Rede Nervosa , Encéfalo , Magnetoencefalografia/métodos , Disfunção Cognitiva/diagnóstico , Redes Neurais de Computação , Imageamento por Ressonância Magnética
6.
Neuroimage ; 265: 119802, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503159

RESUMO

Our brain processes the different timescales of our environment's temporal input stochastics. Is such a temporal input processing mechanism key for consciousness? To address this research question, we calculated measures of input processing on shorter (alpha peak frequency, APF) and longer (autocorrelation window, ACW) timescales on resting-state high-density EEG (256 channels) recordings and compared them across different consciousness levels (awake/conscious, ketamine and sevoflurane anaesthesia, unresponsive wakefulness, minimally conscious state). We replicate and extend previous findings of: (i) significantly longer ACW values, consistently over all states of unconsciousness, as measured with ACW-0 (an unprecedented longer version of the well-know ACW-50); (ii) significantly slower APF values, as measured with frequency sliding, in all four unconscious states. Most importantly, we report a highly significant correlation of ACW-0 and APF in the conscious state, while their relationship is disrupted in the unconscious states. In sum, we demonstrate the relevance of the brain's capacity for input processing on shorter (APF) and longer (ACW) timescales - including their relationship - for consciousness. Albeit indirectly, e.g., through the analysis of electrophysiological activity at rest, this supports the mechanism of temporo-spatial alignment to the environment's temporal input stochastics, through relating different neural timescales, as one key predisposing factor of consciousness.


Assuntos
Eletroencefalografia , Inconsciência , Humanos , Encéfalo/fisiologia , Estado de Consciência/fisiologia , Estado Vegetativo Persistente
7.
Adv Exp Med Biol ; 1384: 17-29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36217076

RESUMO

A growing number of studies have shown the strong relationship between sleep and different cognitive processes, especially those that involve memory consolidation. Traditionally, these processes were attributed to mechanisms related to the macroarchitecture of sleep, as sleep cycles or the duration of specific stages, such as the REM stage. More recently, the relationship between different cognitive traits and specific waves (sleep spindles or slow oscillations) has been studied. We here present the most important physiological processes induced by sleep, with particular focus on brain electrophysiology. In addition, recent and classical literature were reviewed to cover the gap between sleep and cognition, while illustrating this relationship by means of clinical examples. Finally, we propose that future studies may focus not only on analyzing specific waves, but also on the relationship between their characteristics as potential biomarkers for multiple diseases.


Assuntos
Eletroencefalografia , Consolidação da Memória , Encéfalo/fisiologia , Cognição , Consolidação da Memória/fisiologia , Sono/fisiologia , Fases do Sono/fisiologia
8.
Adv Exp Med Biol ; 1384: 131-146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36217082

RESUMO

The overnight polysomnography shows a range of drawbacks to diagnose obstructive sleep apnea (OSA) that have led to the search for artificial intelligence-based alternatives. Many classic machine learning methods have been already evaluated for this purpose. In this chapter, we show the main approaches found in the scientific literature along with the most used data to develop the models, useful and large easily available databases, and suitable methods to assess performances. In addition, a range of results from selected studies are presented as examples of these methods. Very high diagnostic performances are reported in these results regardless of the approaches taken. This leads us to conclude that conventional machine learning methods are useful techniques to develop new OSA diagnosis simplification proposals and to act as benchmark for other more recent methods such as deep learning.


Assuntos
Inteligência Artificial , Apneia Obstrutiva do Sono , Humanos , Aprendizado de Máquina , Polissonografia/métodos , Apneia Obstrutiva do Sono/diagnóstico
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2957-2960, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085956

RESUMO

Previous studies have suggested that the typical slow oscillations (SO) characteristics during sleep could be modified in the presence of pediatric obstructive sleep apnea (OSA). Here, we evaluate whether these modifications are significant and if they may reflect cognitive deficits. We recorded the overnight electroencephalogram (EEG) of 294 pediatric subjects (5-9 years old) using eight channels. Then, we divided the cohort in three OSA severity groups (no OSA, mild, and moderate/severe) to characterize the corresponding SO using the spectral maximum in the slow wave sleep (SWS) band δ1: 0.1-2 Hz (Maxs o), as well as the frequency where this maximum is located (FreqMaxso). Spectral entropy (SpecEn) from δ1 was also included in the analyses. A correlation analysis was performed to evaluate associations of these spectral measures with six OSA-related clinical variables and six cognitive scores. Our results indicate that Maxso could be used as a moderate/severe OSA biomarker while providing useful information regarding verbal and visuo-spatial impairments, and that FreqMaxso emerges as an even more robust indicator of visuospatial function. In addition, we uncovered novel insights regarding the ability of SpecEn in δ1 to characterize OSA-related disruption of sleep homeostasis. Our findings suggest that the information from SO may be useful to automatically characterize moderate/severe pediatric OSA and its cognitive consequences. Clinical Relevance- This study contributes towards reaching an objective quantifiable and automated assessment of the potential cognitive consequences of pediatric sleep apnea.


Assuntos
Disfunção Cognitiva , Apneia Obstrutiva do Sono , Sono de Ondas Lentas , Criança , Pré-Escolar , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Eletroencefalografia/métodos , Humanos , Sono , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/diagnóstico
10.
J Headache Pain ; 23(1): 95, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927625

RESUMO

BACKGROUND: The diagnosis of migraine is mainly clinical and self-reported, which makes additional examinations unnecessary in most cases. Migraine can be subtyped into chronic (CM) and episodic (EM). Despite the very high prevalence of migraine, there are no evidence-based guidelines for differentiating between these subtypes other than the number of days of migraine headache per month. Thus, we consider it timely to perform a systematic review to search for physiological evidence from functional activity (as opposed to anatomical structure) for the differentiation between CM and EM, as well as potential functional biomarkers. For this purpose, Web of Science (WoS), Scopus, and PubMed databases were screened. FINDINGS: Among the 24 studies included in this review, most of them (22) reported statistically significant differences between the groups of CM and EM. This finding is consistent regardless of brain activity acquisition modality, ictal stage, and recording condition for a wide variety of analyses. That speaks for a supramodal and domain-general differences between CM and EM that goes beyond a differentiation based on the days of migraine per month. Together, the reviewed studies demonstrates that electro- and magneto-physiological brain activity (M/EEG), as well as neurovascular and metabolic recordings from functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), show characteristic patterns that allow to differentiate between CM and EM groups. CONCLUSIONS: Although a clear brain activity-based biomarker has not yet been identified to distinguish these subtypes of migraine, research is approaching headache specialists to a migraine diagnosis based not only on symptoms and signs reported by patients. Future studies based on M/EEG should pay special attention to the brain activity in medium and fast frequency bands, mainly the beta band. On the other hand, fMRI and PET studies should focus on neural circuits and regions related to pain and emotional processing.


Assuntos
Transtornos de Enxaqueca , Biomarcadores , Doença Crônica , Eletroencefalografia , Cefaleia , Humanos , Imageamento por Ressonância Magnética , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/epidemiologia , Tomografia por Emissão de Pósitrons
11.
Neuroimage ; 256: 119245, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35477021

RESUMO

Cortical oscillations and scale-free neural activity are thought to influence a variety of cognitive functions, but their differential relationships to neural stability and flexibility has never been investigated. Based on the existing literature, we hypothesize that scale-free and oscillatory processes in the brain exhibit different trade-offs between stability and flexibility; specifically, cortical oscillations may reflect variable, task-responsive aspects of brain activity, while scale-free activity is proposed to reflect a more stable and task-unresponsive aspect. We test this hypothesis using data from two large-scale MEG studies (HCP: n = 89; CamCAN: n = 195), operationalizing stability and flexibility by task-responsiveness and spontaneous intra-subject variability in resting state. We demonstrate that the power-law exponent of scale-free activity is a highly stable parameter, which responds little to external cognitive demands and shows minimal spontaneous fluctuations over time. In contrast, oscillatory power, particularly in the alpha range (8-13 Hz), responds strongly to tasks and exhibits comparatively large spontaneous fluctuations over time. In sum, our data support differential roles for oscillatory and scale-free activity in the brain with respect to neural stability and flexibility. This result carries implications for criticality-based theories of scale-free activity, state-trait models of variability, and homeostatic views of the brain with regulated variables vs. effectors.


Assuntos
Mapeamento Encefálico , Magnetoencefalografia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Cognição , Fenômenos Eletrofisiológicos , Humanos , Magnetoencefalografia/métodos
12.
Schizophr Res ; 243: 43-54, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35231833

RESUMO

Hallucinations are considered characteristic symptoms of psychosis and part of the 'psychosis superspectrum' of the Hierarchical Taxonomy Of Psychopathology (HiTOP) initiative. To gain insight into their psychopathological relevance, we studied their dimensional placement within a single dense transdiagnostic network constituting of basic symptoms as well as of attenuated and frank psychotic, and related symptoms. Newman's modularity analysis was used to detect symptom clusters in an earlier generated network (Jimeno, N., et al., 2020. Main symptomatic treatment targets in suspected and early psychosis: New insights from network analysis. Schizophr. Bull. 46, 884-895. https://doi.org/10.1093/schbul/sbz140). The constituting 86 symptoms were assessed with the Schizophrenia Proneness Instrument, Adult version (SPI-A), the Structured Interview for Psychosis-Risk Syndromes (SIPS), and the Positive And Negative Syndrome Scale (PANSS) in three adult samples of an early detection service: clinical high-risk (n = 203), first-episode psychosis (n = 153), and major depression (n = 104). Three clusters were detected: "subjective disturbances", "positive symptoms and behaviors", and "negative and anxious-depressive symptoms". The predominately attenuated hallucinations of both SIPS and PANSS joined the basic symptoms in "subjective disturbances", whereas other positive symptoms entered "positive symptoms and behaviors". Our results underline the importance of insight in separating true psychotic hallucinations from other hallucinatory experiences that, albeit phenomenologically similar are still experienced with some insight, i.e., are present in an attenuated form. We conclude that, strictly, hallucinations held with any degree of insight should not be used to diagnose transition to or presence of frank psychoses and, relatedly, to justify antipsychotic medication.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Adulto , Animais , Bovinos , Análise por Conglomerados , Alucinações/diagnóstico , Alucinações/etiologia , Humanos , Masculino , Psicopatologia , Transtornos Psicóticos/diagnóstico , Esquizofrenia/diagnóstico
13.
J Neural Eng ; 19(1)2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35108688

RESUMO

Objective.Schizophrenia is a psychiatric disorder that has been shown to disturb the dynamic top-down processing of sensory information. Various imaging techniques have revealed abnormalities in brain activity associated with this disorder, both locally and between cerebral regions. However, there is increasing interest in investigating dynamic network response to novel and relevant events at the network level during an attention-demanding task with high-temporal-resolution techniques. The aim of the work was: (i) to test the capacity of a novel algorithm to detect recurrent brain meta-states from auditory oddball task recordings; and (ii) to evaluate how the dynamic activation and behavior of the aforementioned meta-states were altered in schizophrenia, since it has been shown to impair top-down processing of sensory information.Approach.A novel unsupervised method for the detection of brain meta-states based on recurrence plots and community detection algorithms, previously tested on resting-state data, was used on auditory oddball task recordings. Brain meta-states and several properties related to their activation during target trials in the task were extracted from electroencephalography data from patients with schizophrenia and cognitively healthy controls.Main results.The methodology successfully detected meta-states during an auditory oddball task, and they appeared to show both frequency-dependent time-locked and non-time-locked activity with respect to the stimulus onset. Moreover, patients with schizophrenia displayed higher network diversity, and showed more sluggish meta-state transitions, reflected in increased dwell times, less complex meta-state sequences, decreased meta-state space speed, and abnormal ratio of negative meta-state correlations.Significance.Abnormal cognition in schizophrenia is also reflected in decreased brain flexibility at the dynamic network level, which may hamper top-down processing, possibly indicating impaired decision-making linked to dysfunctional predictive coding. Moreover, the results showed the ability of the methodology to find meaningful and task-relevant changes in dynamic connectivity and pathology-related group differences.


Assuntos
Esquizofrenia , Encéfalo , Mapeamento Encefálico , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética/métodos
14.
Cereb Cortex ; 32(24): 5637-5653, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-35188968

RESUMO

The brain shows a topographical hierarchy along the lines of lower- and higher-order networks. The exact temporal dynamics characterization of this lower-higher-order topography at rest and its impact on task states remains unclear, though. Using 2 functional magnetic resonance imaging data sets, we investigate lower- and higher-order networks in terms of the signal compressibility, operationalized by Lempel-Ziv complexity (LZC). As we assume that this degree of complexity is related to the slow-fast frequency balance, we also compute the median frequency (MF), an estimation of frequency distribution. We demonstrate (i) topographical differences at rest between higher- and lower-order networks, showing lower LZC and MF in the former; (ii) task-related and task-specific changes in LZC and MF in both lower- and higher-order networks; (iii) hierarchical relationship between LZC and MF, as MF at rest correlates with LZC rest-task change along the lines of lower- and higher-order networks; and (iv) causal and nonlinear relation between LZC at rest and LZC during task, with MF at rest acting as mediator. Together, results show that the topographical hierarchy of lower- and higher-order networks converges with their temporal hierarchy, with these neural dynamics at rest shaping their range of complexity during task states in a nonlinear way.


Assuntos
Encéfalo , Eletroencefalografia , Eletroencefalografia/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
15.
Trends Cogn Sci ; 26(2): 159-173, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34991988

RESUMO

We are continuously bombarded by external inputs of various timescales from the environment. How does the brain process this multitude of timescales? Recent resting state studies show a hierarchy of intrinsic neural timescales (INT) with a shorter duration in unimodal regions (e.g., visual cortex and auditory cortex) and a longer duration in transmodal regions (e.g., default mode network). This unimodal-transmodal hierarchy is present across acquisition modalities [electroencephalogram (EEG)/magnetoencephalogram (MEG) and fMRI] and can be found in different species and during a variety of different task states. Together, this suggests that the hierarchy of INT is central to the temporal integration (combining successive stimuli) and segregation (separating successive stimuli) of external inputs from the environment, leading to temporal segmentation and prediction in perception and cognition.


Assuntos
Mapeamento Encefálico , Córtex Visual , Encéfalo/diagnóstico por imagem , Cognição , Humanos , Imageamento por Ressonância Magnética
16.
Cereb Cortex ; 32(20): 4592-4604, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-35094077

RESUMO

The brain is continuously bombarded by external stimuli, which are processed in different input systems. The intrinsic features of these sensory input systems remain yet unclear. Investigating topography and dynamics of input systems is the goal of our study in order to better understand the intrinsic features that shape their neural processing. Using a functional magnetic resonance imaging dataset, we measured neural topography and dynamics of the input systems during rest and task states. Neural dynamics were probed by scale-free activity, measured with the power-law exponent (PLE), as well as by order/disorder as measured with sample entropy (SampEn). Our main findings during both rest and task states are: 1) differences in neural dynamics (PLE, SampEn) between regions within each of the three sensory input systems 2) differences in topography and dynamics among the three input systems; 3) PLE and SampEn correlate and, as demonstrated in simulation, show non-linear relationship in the critical range of PLE; 4) scale-free activity during rest mediates the transition of SampEn from rest to task as probed in a mediation model. We conclude that the sensory input systems are characterized by their intrinsic topographic and dynamic organization which, through scale-free activity, modulates their input processing.


Assuntos
Mapeamento Encefálico , Descanso , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Entropia , Imageamento por Ressonância Magnética/métodos
17.
Cereb Cortex ; 32(16): 3441-3456, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34875019

RESUMO

Studies of perception and cognition in schizophrenia (SCZ) show neuronal background noise (ongoing activity) to intermittently overwhelm the processing of external stimuli. This increased noise, relative to the activity evoked by the stimulus, results in temporal imprecision and higher variability of behavioral responses. What, however, are the neural correlates of temporal imprecision in SCZ behavior? We first report a decrease in electroencephalography signal-to-noise ratio (SNR) in two SCZ datasets and tasks in the broadband (1-80 Hz), theta (4-8 Hz), and alpha (8-13 Hz) bands. SCZ participants also show lower inter-trial phase coherence (ITPC)-consistency over trials in the phase of the signal-in theta. From these ITPC results, we varied phase offsets in a computational simulation, which illustrated phase-based temporal desynchronization. This modeling also provided a necessary link to our results and showed decreased neural synchrony in SCZ in both datasets and tasks when compared with healthy controls. Finally, we showed that reduced SNR and ITPC are related and showed a relationship to temporal precision on the behavioral level, namely reaction times. In conclusion, we demonstrate how temporal imprecision in SCZ neural activity-reduced relative signal strength and phase coherence-mediates temporal imprecision on the behavioral level.


Assuntos
Esquizofrenia , Eletroencefalografia , Humanos , Ruído , Tempo de Reação
18.
Brain Behav ; 11(12): e2415, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34758203

RESUMO

INTRODUCTION: Recent studies support the identification of valid subtypes within schizophrenia and bipolar disorder using cluster analysis. Our aim was to identify meaningful biotypes of psychosis based on network properties of the electroencephalogram. We hypothesized that these parameters would be more altered in a subgroup of patients also characterized by more severe deficits in other clinical, cognitive, and biological measurements. METHODS: A clustering analysis was performed using the electroencephalogram-based network parameters derived from graph-theory obtained during a P300 task of 137 schizophrenia (of them, 35 first episodes) and 46 bipolar patients. Both prestimulus and modulation of the electroencephalogram were included in the analysis. Demographic, clinical, cognitive, structural cerebral data, and the modulation of the spectral entropy of the electroencephalogram were compared between clusters. Data from 158 healthy controls were included for further comparisons. RESULTS: We identified two clusters of patients. One cluster presented higher prestimulus connectivity strength, clustering coefficient, path-length, and lower small-world index compared to controls. The modulation of clustering coefficient and path-length parameters was smaller in the former cluster, which also showed an altered structural connectivity network and a widespread cortical thinning. The other cluster of patients did not show significant differences with controls in the functional network properties. No significant differences were found between patients´ clusters in first episodes and bipolar proportions, symptoms scores, cognitive performance, or spectral entropy modulation. CONCLUSION: These data support the existence of a subgroup within psychosis with altered global properties of functional and structural connectivity.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Entropia , Humanos , Imageamento por Ressonância Magnética , Transtornos Psicóticos/psicologia
19.
Front Neurosci ; 15: 644697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803578

RESUMO

Pediatric obstructive sleep apnea (OSA) is a prevalent disorder that disrupts sleep and is associated with neurocognitive and behavioral negative consequences, potentially hampering the development of children for years. However, its relationships with sleep electroencephalogram (EEG) have been scarcely investigated. Here, our main objective was to characterize the overnight EEG of OSA-affected children and its putative relationships with polysomnographic measures and cognitive functions. A two-step analysis involving 294 children (176 controls, 57% males, age range: 5-9 years) was conducted for this purpose. First, the activity and irregularity of overnight EEG spectrum were characterized in the typical frequency bands by means of relative spectral power and spectral entropy, respectively: δ1 (0.1-2 Hz), δ2 (2-4 Hz), θ (4-8 Hz), α (8-13 Hz), σ (10-16 Hz), ß1 (13-19 Hz), ß2 (19-30 Hz), and γ (30-70 Hz). Then, a correlation network analysis was conducted to evaluate relationships between them, six polysomnography variables (apnea-hypopnea index, respiratory arousal index, spontaneous arousal index, overnight minimum blood oxygen saturation, wake time after sleep onset, and sleep efficiency), and six cognitive scores (differential ability scales, Peabody picture vocabulary test, expressive vocabulary test, design copying, phonological processing, and tower test). We found that as the severity of the disease increases, OSA broadly affects sleep EEG to the point that the information from the different frequency bands becomes more similar, regardless of activity or irregularity. EEG activity and irregularity information from the most severely affected children were significantly associated with polysomnographic variables, which were coherent with both micro and macro sleep disruptions. We hypothesize that the EEG changes caused by OSA could be related to the occurrence of respiratory-related arousals, as well as thalamic inhibition in the slow oscillation generation due to increases in arousal levels aimed at recovery from respiratory events. Furthermore, relationships between sleep EEG and cognitive scores emerged regarding language, visual-spatial processing, and executive function with pronounced associations found with EEG irregularity in δ1 (Peabody picture vocabulary test and expressive vocabulary test maximum absolute correlations 0.61 and 0.54) and ß2 (phonological processing, 0.74; design copying, 0.65; and Tow 0.52). Our results show that overnight EEG informs both sleep alterations and cognitive effects of pediatric OSA. Moreover, EEG irregularity provides new information that complements and expands the classic EEG activity analysis. These findings lay the foundation for the use of sleep EEG to assess cognitive changes in pediatric OSA.

20.
Entropy (Basel) ; 23(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34573781

RESUMO

A thorough and comprehensive understanding of the human brain ultimately depends on knowledge of large-scale brain organization[...].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA