RESUMO
The development of disease-modifying therapies (DMTs) for neurological disorders is an important goal in modern neurology, and the associated challenges are similar in many chronic neurological conditions. Major advances have been made in the multiple sclerosis (MS) field, with a range of DMTs being approved for relapsing MS and the introduction of the first DMTs for progressive MS. By contrast, people with Parkinson disease (PD) still lack such treatment options, relying instead on decades-old therapeutic approaches that provide only symptomatic relief. To address this unmet need, an in-person symposium was held in Toronto, Canada, in November 2022 for international researchers and experts in MS and PD to discuss strategies for advancing DMT development. In this Roadmap article, we highlight discussions from the symposium, which focused on therapeutic targets and preclinical models, disease spectra and subclassifications, and clinical trial design and outcome measures. From these discussions, we propose areas for novel or deeper exploration in PD using lessons learned from therapeutic development in MS. In addition, we identify challenges common to the PD and MS fields that need to be addressed to further advance the discovery and development of effective DMTs.
RESUMO
The human gut microbiome is well-recognized as a key player in maintaining health. However, it is a dynamic entity that changes across the lifespan. How the microbial changes that occur in later decades of life shape host health or impact age-associated inflammatory neurological diseases such as multiple sclerosis (MS) is still unclear. Current understanding of the aging gut microbiome is largely limited to cross-sectional observational studies. Moreover, studies in humans are limited by confounding host-intrinsic and extrinsic factors that are not easily disentangled from aging. This review provides a comprehensive summary of existing literature on the aging gut microbiome and its known relationships with neurological diseases, with a specific focus on MS. We will also discuss preclinical animal models and human studies that shed light on the complex microbiota-host interactions that have the potential to influence disease pathology and progression in aging individuals. Lastly, we propose potential avenues of investigation to deconvolute features of an aging microbiota that contribute to disease, or alternatively promote health in advanced age.
Assuntos
Envelhecimento , Microbioma Gastrointestinal , Esclerose Múltipla , Humanos , Esclerose Múltipla/microbiologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/etiologia , Envelhecimento/imunologia , Microbioma Gastrointestinal/imunologia , Animais , Doenças do Sistema Nervoso/microbiologia , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/imunologia , Modelos Animais de DoençasRESUMO
Although high titers of neutralizing Abs in human serum are associated with protection from reinfection by SARS-CoV-2, there is considerable heterogeneity in human serum-neutralizing Abs against SARS-CoV-2 during convalescence between individuals. Standard human serum live virus neutralization assays require inactivation of serum/plasma prior to testing. In this study, we report that the SARS-CoV-2 neutralization titers of human convalescent sera were relatively consistent across all disease states except for severe COVID-19, which yielded significantly higher neutralization titers. Furthermore, we show that heat inactivation of human serum significantly lowered neutralization activity in a live virus SARS-CoV-2 neutralization assay. Heat inactivation of human convalescent serum was shown to inactivate complement proteins, and the contribution of complement in SARS-CoV-2 neutralization was often >50% of the neutralizing activity of human sera without heat inactivation and could account for neutralizing activity when standard titers were zero after heat inactivation. This effect was also observed in COVID-19 vaccinees and could be abolished in individuals who were undergoing treatment with therapeutic anti-complement Abs. Complement activity was mainly dependent on the classical pathway with little contributions from mannose-binding lectin and alternative pathways. Our study demonstrates the importance of the complement pathway in significantly increasing viral neutralization activity against SARS-CoV-2 in spike seropositive individuals.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Via Clássica do Complemento , Testes de Neutralização , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , COVID-19/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Via Clássica do Complemento/imunologia , Vacinas contra COVID-19/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Convalescença , Idoso , Proteínas do Sistema Complemento/imunologiaRESUMO
Experimental autoimmune encephalomyelitis (EAE) is a common immune-based model of multiple sclerosis (MS). This disease can be induced in rodents by active immunization with protein components of the myelin sheath and Complete Freund's adjuvant (CFA) or by the transfer of myelin-specific T effector cells from rodents primed with myelin protein/CFA into naïve rodents. The severity of EAE is typically scored on a 5-point clinical scale that measures the degree of ascending paralysis, but this scale is not optimal for assessing the extent of recovery from EAE. For example, clinical scores remain high in some EAE models (e.g., myelin oligodendrocyte glycoprotein [MOG] peptide-induced model of EAE) despite the resolution of inflammation. Thus, it is important to complement clinical scoring with histological scoring of EAE, which also provides a means to study the underlying mechanisms of cellular injury in the central nervous system (CNS). Here, a simple protocol is presented to prepare and stain spinal cord and brain sections from mice and to score inflammation, demyelination, and axonal injury in the spinal cord. The method for scoring leukocyte infiltration in the spinal cord can also be applied to score brain inflammation in EAE. A protocol for measuring soluble neurofilament light (sNF-L) in the serum of mice using a Small Molecule Assay (SIMOA) assay is also described, which provides feedback on the extent of overall CNS injury in live mice.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/induzido quimicamente , Esclerose Múltipla/patologia , Medula Espinal/patologia , Inflamação/patologia , Axônios/patologia , Glicoproteína Mielina-Oligodendrócito , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/efeitos adversosRESUMO
Anti-CD20 therapy to deplete B cells is highly efficacious in preventing new white matter lesions in patients with relapsing-remitting multiple sclerosis (RRMS), but its protective capacity against gray matter injury and axonal damage is unclear. In a passive experimental autoimmune encephalomyelitis (EAE) model whereby TH17 cells promote brain leptomeningeal immune cell aggregates, we found that anti-CD20 treatment effectively spared myelin content and prevented myeloid cell activation, oxidative damage, and mitochondrial stress in the subpial gray matter. Anti-CD20 treatment increased B cell survival factor (BAFF) in the serum, cerebrospinal fluid, and leptomeninges of mice with EAE. Although anti-CD20 prevented gray matter demyelination, axonal loss, and neuronal atrophy, co-treatment with anti-BAFF abrogated these benefits. Consistent with the murine studies, we observed that elevated BAFF concentrations after anti-CD20 treatment in patients with RRMS were associated with better clinical outcomes. Moreover, BAFF promoted survival of human neurons in vitro. Together, our data demonstrate that BAFF exerts beneficial functions in MS and EAE in the context of anti-CD20 treatment.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla Recidivante-Remitente , Humanos , Animais , Camundongos , Neuroproteção , Encéfalo , Substância Cinzenta , Apresentação de Antígeno , Atrofia , Encefalomielite Autoimune Experimental/tratamento farmacológicoRESUMO
Our understanding of the quality of cellular and humoral immunity conferred by COVID-19 vaccination alone versus vaccination plus SARS-CoV-2 breakthrough (BT) infection remains incomplete. While the current (2023) SARS-CoV-2 immune landscape of Canadians is complex, in late 2021 most Canadians had either just received a third dose of COVID-19 vaccine, or had received their two-dose primary series and then experienced an Omicron BT. Herein we took advantage of this coincident timing to contrast cellular and humoral immunity conferred by three doses of vaccine versus two doses plus BT. Our results show thatBT infection induces cell-mediated immune responses to variants comparable to an intramuscular vaccine booster dose. In contrast, BT subjects had higher salivary immunoglobulin (Ig)G and IgA levels against the Omicron spike and enhanced reactivity to the ancestral spike for the IgA isotype, which also reacted with SARS-CoV-1. Serumneutralizing antibody levels against the ancestral strain and the variants were also higher after BT infection. Our results support the need for the development of intranasal vaccines that could emulate the enhanced mucosal and humoral immunity induced by Omicron BT without exposing individuals to the risks associated with SARS-CoV-2 infection.
Assuntos
COVID-19 , População Norte-Americana , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções Irruptivas , Canadá , Vacinas contra COVID-19 , Imunidade Humoral , Imunoglobulina A Secretora , Imunoglobulina GRESUMO
B cells can express pro-inflammatory cytokines that promote a wide variety of immune responses. Here we show that B cells expressing the phosphatidylserine receptor TIM-4, preferentially express not only IL-17A, but also IL-22, IL-6, and GM-CSF - a collection of cytokines reminiscent of pathogenic Th17 cells. Expression of this proinflammatory module requires B cell expression of IL-23R, RORγt and IL-17. IL-17 expressed by TIM-4+ B cells not only enhances the severity of experimental autoimmune encephalomyelitis (EAE) and promotes allograft rejection, but also acts in an autocrine manner to prevent their conversion into IL-10-expressing B cells with regulatory function. Thus, IL-17 acts as an inflammatory mediator and also enforces the proinflammatory activity of TIM-4+ B cells. TIM-4 serves as a broad marker for effector B cells (Beff) that will allow the study of the signals regulating their differentiation and expression of their effector molecules.
RESUMO
The IL-10/IL-10 receptor (IL-10R) axis plays an important role in attenuating neuroinflammation in animal models of Multiple Sclerosis (MS) and increased IL-10 has been associated with a positive response to MS disease modifying therapy. Because environmental factors play an important role in MS susceptibility and disease course, identification of environmental factors that impact the IL-10/IL-10R axis has therapeutic potential. In this review, we provide historical and updated perspectives of how IL-10R signaling impacts neuroinflammation, discuss environmental factors and intestinal microbes with known impacts on the IL-10/IL-10R axis, and provide a hypothetical model for how B cells, via their production of IL-10, may be important in conveying environmental "information" to the inflamed central nervous system.
Assuntos
Interleucina-10 , Esclerose Múltipla , Animais , Doenças Neuroinflamatórias , Linfócitos B , Sistema Nervoso Central , Esclerose Múltipla/etiologia , Receptores de Interleucina-10Assuntos
Doenças Autoimunes , Autoimunidade , Humanos , Doenças Autoimunes/etiologia , Fatores de RiscoRESUMO
In early 2020, a global emergency was upon us in the form of the coronavirus disease 2019 (COVID-19) pandemic. While horrific in its health, social and economic devastation, one silver lining to this crisis has been a rapid mobilization of cross-institute, and even cross-country teams that shared common goals of learning as much as we could as quickly as possible about the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and how the immune system would respond to both the virus and COVID-19 vaccines. Many of these teams were formed by women who quickly realized that the classical model of "publish first at all costs" was maladaptive for the circumstances and needed to be supplanted by a more collaborative solution-focused approach. This review is an example of a collaboration that unfolded in separate countries, first Canada and the United States, and then also Israel. Not only did the collaboration allow us to cross-validate our results using different hands/techniques/samples, but it also took advantage of different vaccine types and schedules that were rolled out in our respective home countries. The result of this collaboration was a new understanding of how mucosal immunity to SARS-CoV-2 infection vs COVID-19 vaccination can be measured using saliva as a biofluid, what types of vaccines are best able to induce (limited) mucosal immunity, and what are potential correlates of protection against breakthrough infection. In this review, we will share what we have learned about the mucosal immune response to SARS-CoV-2 and to COVID-19 vaccines and provide a perspective on what may be required for next-generation pan-sarbecoronavirus vaccine approaches.
Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , Vacinas contra COVID-19 , Feminino , Humanos , Imunoglobulina A , SARS-CoV-2 , VacinaçãoRESUMO
A better understanding of the pathological mechanisms that drive neurodegeneration in people living with multiple sclerosis (MS) is needed to design effective therapies to treat and/or prevent disease progression. We propose that CNS-intrinsic inflammation and re-modelling of the sub-arachnoid space of the leptomeninges sets the stage for neurodegeneration from the earliest stages of MS. While neurodegenerative processes are clinically silent early in disease, ageing results in neurodegenerative changes that become clinically manifest as progressive disability. Here we review pathological correlates of MS disease progression, highlight emerging mouse models that mimic key progressive changes in MS, and provide new perspectives on therapeutic approaches to protect against MS-associated neurodegeneration.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Humanos , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/terapia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Progressão da Doença , Inflamação/patologia , Modelos Animais de DoençasRESUMO
People living with multiple sclerosis (MS) experience episodic CNS white matter lesions instigated by autoreactive T cells. With age, patients with MS show evidence of gray matter demyelination and experience devastating nonremitting symptomology. What drives progression is unclear and studying this has been hampered by the lack of suitable animal models. Here, we show that passive experimental autoimmune encephalomyelitis (EAE) induced by an adoptive transfer of young Th17 cells induced a nonremitting clinical phenotype that was associated with persistent leptomeningeal inflammation and cortical pathology in old, but not young, SJL/J mice. Although the quantity and quality of T cells did not differ in the brains of old versus young EAE mice, an increase in neutrophils and a decrease in B cells were observed in the brains of old mice. Neutrophils were also found in the leptomeninges of a subset of progressive MS patient brains that showed evidence of leptomeningeal inflammation and subpial cortical demyelination. Taken together, our data show that while Th17 cells initiate CNS inflammation, subsequent clinical symptoms and gray matter pathology are dictated by age and associated with other immune cells, such as neutrophils.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Substância Cinzenta/patologia , Humanos , Inflamação , Camundongos , Neutrófilos/patologiaRESUMO
Although SARS-CoV-2 infects the upper respiratory tract, we know little about the amount, type, and kinetics of antibodies (Ab) generated in the oral cavity in response to COVID-19 vaccination. We collected serum and saliva samples from participants receiving two doses of mRNA COVID-19 vaccines and measured the level of anti-SARS-CoV-2 Ab. We detected anti-Spike and anti-Receptor Binding Domain (RBD) IgG and IgA, as well as anti-Spike/RBD associated secretory component in the saliva of most participants after dose 1. Administration of a second dose of mRNA boosted the IgG but not the IgA response, with only 30% of participants remaining positive for IgA at this timepoint. At 6 months post-dose 2, these participants exhibited diminished anti-Spike/RBD IgG levels, although secretory component-associated anti-Spike Ab were more stable. Examining two prospective cohorts we found that participants who experienced breakthrough infections with SARS-CoV-2 variants had lower levels of vaccine-induced serum anti-Spike/RBD IgA at 2-4 weeks post-dose 2 compared to participants who did not experience an infection, whereas IgG levels were comparable between groups. These data suggest that COVID-19 vaccines that elicit a durable IgA response may have utility in preventing infection. Our study finds that a local secretory component-associated IgA response is induced by COVID-19 mRNA vaccination that persists in some, but not all participants. The serum and saliva IgA response modestly correlate at 2-4 weeks post-dose 2. Of note, levels of anti-Spike serum IgA (but not IgG) at this timepoint are lower in participants who subsequently become infected with SARS-CoV-2. As new surges of SARS-CoV-2 variants arise, developing COVID-19 booster shots that provoke high levels of IgA has the potential to reduce person-to-person transmission.
Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Estudos Prospectivos , RNA Mensageiro/genética , SARS-CoV-2 , Componente Secretório , VacinaçãoRESUMO
Subpial cortical demyelination is an important component of multiple sclerosis (MS) pathology contributing to disease progression, yet mechanism(s) underlying its development remain unclear. Compartmentalized inflammation involving the meninges may drive this type of injury. Given recent findings identifying substantial white matter (WM) lesion activity in patients with progressive MS, elucidating whether and how WM lesional activity relates to meningeal inflammation and subpial cortical injury is of interest. Using postmortem FFPE tissue blocks (range, 5-72 blocks; median, 30 blocks) for each of 27 patients with progressive MS, we assessed the relationship between meningeal inflammation, the extent of subpial cortical demyelination, and the state of subcortical WM lesional activity. Meningeal accumulations of T cells and B cells, but not myeloid cells, were spatially adjacent to subpial cortical lesions, and greater immune cell accumulation was associated with larger subpial lesion areas. Patients with a higher extent of meningeal inflammation harbored a greater proportion of active and mixed active/inactive WM lesions and an overall lower proportion of inactive and remyelinated WM lesions. Our findings support the involvement of meningeal lymphocytes in subpial cortical injury and point to a potential link between inflammatory subpial cortical demyelination and pathological mechanisms occurring in the subcortical WM.
Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Substância Branca , Linfócitos B , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Humanos , Inflamação , Meninges , Substância Branca/diagnóstico por imagem , Substância Branca/patologiaRESUMO
Although eosinophils are important contributors to mucosal immune responses, mechanisms that regulate their accumulation in mucosal-associated lymphoid tissues remain ill-defined. Combining bone marrow chimeras and pharmacological inhibition approaches, here we find that lymphotoxin-beta receptor (LTßR) signaling during the neonatal period is required for the accumulation of eosinophils in the mesenteric lymph nodes (MLN) during an enteric viral infection in adult male and female mice. We demonstrate that MLN stromal cells express genes that are important for eosinophil migration and survival, such as Ccl-11 (eotaxin-1), Ccl7, Ccl9, and Cxcl2, and that expression of most of these genes is downregulated as a consequence of neonatal LTßR blockade. We also find that neonatal LTßR signaling is required for the generation of a rotavirus-specific IgA antibody response in the adult MLN, but eosinophils are dispensable for this response. Collectively, our studies reveal a role for neonatal LTßR signaling in regulating eosinophil numbers in the adult MLN.
Assuntos
Eosinófilos , Linfonodos , Animais , Feminino , Imunidade nas Mucosas , Imunoglobulina A , Contagem de Leucócitos , Masculino , CamundongosRESUMO
IgA nephropathy (IgAN) is a leading cause of kidney failure, yet little is known about the immunopathogenesis of this disease. IgAN is characterized by deposition of IgA in the kidney glomeruli, but the source and stimulus for IgA production are not known. Clinical and experimental data suggest a role for aberrant immune responses to mucosal microbiota in IgAN, and in some countries with high disease prevalence, tonsillectomy is regarded as standard-of-care therapy. To evaluate the relationship between microbiota and mucosal immune responses, we characterized the tonsil microbiota in patients with IgAN versus nonrelated household-matched control group participants and identified increased carriage of the genus Neisseria and elevated Neisseria-targeted serum IgA in IgAN patients. We reverse-translated these findings in experimental IgAN driven by BAFF overexpression in BAFF-transgenic mice rendered susceptible to Neisseria infection by introduction of a humanized CEACAM-1 transgene (B × hC-Tg). Colonization of B × hC-Tg mice with Neisseria yielded augmented levels of systemic Neisseria-specific IgA. Using a custom ELISPOT assay, we discovered anti-Neisseria-specific IgA-secreting cells within the kidneys of these mice. These findings suggest a role for cytokine-driven aberrant mucosal immune responses to oropharyngeal pathobionts, such as Neisseria, in the immunopathogenesis of IgAN. Furthermore, in the presence of excess BAFF, pathobiont-specific IgA can be produced in situ within the kidney.
Assuntos
Glomerulonefrite por IGA , Microbiota , Animais , Humanos , Imunidade Humoral , Imunoglobulina A , Camundongos , Tonsila Palatina/patologiaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces T cell, B cell, and Ab responses that are detected for several months in recovered individuals. Whether this response resembles a typical respiratory viral infection is a matter of debate. In this study, we followed T cell and Ab responses in 24 mainly nonhospitalized human subjects who had recovered from PCR-confirmed SARS-CoV-2 infection at two time points (median of 45 and 145 d after symptom onset). Ab responses were detected in 95% of subjects, with a strong correlation between plasma and salivary anti-spike (anti-S) and anti-receptor binding domain IgG, as well as a correlation between circulating T follicular helper cells and the SARS-CoV-2-specific IgG response. T cell responses to SARS-CoV-2 peptides were determined using intracellular cytokine staining, activation markers, proliferation, and cytokine secretion. All study subjects had a T cell response to at least one SARS-CoV-2 Ag based on at least one T cell assay. CD4+ responses were largely of the Th1 phenotype, but with a lower ratio of IFN-γ- to IL-2-producing cells and a lower frequency of CD8+:CD4+ T cells than in influenza A virus (IAV)-specific memory responses within the same subjects. Analysis of secreted molecules also revealed a lower ratio of IFN-γ to IL-2 and an altered cytotoxic profile for SARS-CoV-2 S- and nucleocapsid-specific responses compared with IAV-specific responses. These data suggest that the memory T cell phenotype after a single infection with SARS-CoV-2 persists over time, with an altered cytokine and cytotoxicity profile compared with long-term memory to whole IAV within the same subjects.
Assuntos
Formação de Anticorpos , COVID-19/imunologia , Imunidade Celular , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Células Th1/imunologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de TempoRESUMO
The immunopathogenic mechanisms underlying immunoglobulin A nephropathy (IgAN) are poorly understood, yet it is one of the most common causes of kidney failure globally. The commonly referenced syndrome of synpharyngitic gross hematuria as a presenting feature of IgAN has led to a logical association between infections and development of IgAN, however no pathogenic organism has been clearly linked to IgAN. Advances in sequencing technology have enabled more detailed characterization of host microbial communities, and highlighted the interrelationship between microbiota and immune responses in health and disease. This review will summarize current thinking on the relationship between microbiota and development of IgAN with a focus on recent studies relating aberrant mucosal IgA-biased immune responses to microbiota and how this may be related to the immunopathogenesis of IgAN.