Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Phytomedicine ; 126: 155348, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335913

RESUMO

BACKGROUND: (-)-Asarinin (Asarinin) is the primary component in the extract of the herb Asarum sieboldii Miq. It possesses various functions, including pain relief, anti-viral and anti-tuberculous bacilli effects, and inhibition of tumor growth. Gastric precancerous lesion (GPL) is a common but potentially carcinogenic chronic gastrointestinal disease, and its progression can lead to gastric dysfunction and cancer development. However, the protective effects of asarinin against GPL and the underlying mechanisms remain unexplored. METHODS: A premalignant cell model (methylnitronitrosoguanidine-induced malignant transformation of human gastric epithelial cell strain, MC cells) and a GPL animal model were established and then were treated with asarinin. The cytotoxic effect of asarinin was assessed using a CCK8 assay. Detection of intracellular reactive oxygen species (ROS) using DCFH-DA. Apoptosis in MC cells was evaluated using an annexin V-FITC/PI assay. We performed western blot analysis and immunohistochemistry (IHC) to analyze relevant markers, investigating the in vitro and in vivo therapeutic effects of asarinin on GPL and its intrinsic mechanisms. RESULTS: Our findings showed that asarinin inhibited MC cell proliferation, enhanced intracellular ROS levels, and induced cell apoptosis. Further investigations revealed that the pharmacological effects of asarinin on MC cells were blocked by the ROS scavenger N-acetylcysteine. IHC revealed a significant upregulation of phospho-signal transducer and activator of transcription 3 (p-STAT3) protein expression in human GPL tissues. In vitro, asarinin exerted its pro-apoptotic effects in MC cells by modulating the STAT3 signaling pathway. Agonists of STAT3 were able to abolish the effects of asarinin on MC cells. In vivo, asarinin induced ROS accumulation and inhibited the STAT3 pathway in gastric mucosa of mice, thereby halting and even reversing the development of GPL. CONCLUSION: Asarinin induces apoptosis and delays the progression of GPL by promoting mitochondrial ROS production, decreasing mitochondrial membrane potential (MMP), and inhibiting the STAT3 pathway.


Assuntos
Dioxóis , Lignanas , Lesões Pré-Cancerosas , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Lignanas/farmacologia , Proliferação de Células , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/tratamento farmacológico , Lesões Pré-Cancerosas/patologia , Apoptose , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral
2.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2500-2511, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282879

RESUMO

This study aimed to elucidate the effect and underlying mechanism of Bovis Calculus in the treatment of ulcerative colitis(UC) through network pharmacological prediction and animal experimental verification. Databases such as BATMAN-TCM were used to mine the potential targets of Bovis Calculus against UC, and the pathway enrichment analysis was conducted. Seventy healthy C57BL/6J mice were randomly divided into a blank group, a model group, a solvent model(2% polysorbate 80) group, a salazosulfapyridine(SASP, 0.40 g·kg~(-1)) group, and high-, medium-, and low-dose Bovis Calculus Sativus(BCS, 0.20, 0.10, and 0.05 g·kg~(-1)) groups according to the body weight. The UC model was established in mice by drinking 3% dextran sulfate sodium(DSS) solution for 7 days. The mice in the groups with drug intervention received corresponding drugs for 3 days before modeling by gavage, and continued to take drugs for 7 days while modeling(continuous administration for 10 days). During the experiment, the body weight of mice was observed, and the disease activity index(DAI) score was recorded. After 7 days of modeling, the colon length was mea-sured, and the pathological changes in colon tissues were observed by hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1ß(IL-1ß), interleukin-6(IL-6), and interleukin-17(IL-17) in colon tissues of mice were detected by enzyme-linked immunosorbent assay(ELISA). The mRNA expression of IL-17, IL-17RA, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1ß, CXCL1, CXCL2, and CXCL10 was evaluated by real-time polymerase chain reaction(RT-PCR). The protein expression of IL-17, IL-17RA, Act1, p-p38 MAPK, and p-ERK1/2 was investigated by Western blot. The results of network pharmacological prediction showed that Bovis Calculus might play a therapeutic role through the IL-17 signaling pathway and the TNF signaling pathway. As revealed by the results of animal experiments, on the 10th day of drug administration, compared with the solvent model group, all the BCS groups showed significantly increased body weight, decreased DAI score, increased colon length, improved pathological damage of colon mucosa, and significantly inhibited expression of TNF-α,IL-6,IL-1ß, and IL-17 in colon tissues. The high-dose BCS(0.20 g·kg~(-1)) could significantly reduce the mRNA expression levels of IL-17, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1ß, CXCL1, and CXCL2 in colon tissues of UC model mice, tend to down-regulate mRNA expression levels of IL-17RA and CXCL10, significantly inhibit the protein expression of IL-17RA,Act1,and p-ERK1/2, and tend to decrease the protein expression of IL-17 and p-p38 MAPK. This study, for the first time from the whole-organ-tissue-molecular level, reveals that BCS may reduce the expression of pro-inflammatory cytokines and chemokines by inhibiting the IL-17/IL-17RA/Act1 signaling pathway, thereby improving the inflammatory injury of colon tissues in DSS-induced UC mice and exerting the effect of clearing heat and removing toxins.


Assuntos
Colite Ulcerativa , Camundongos , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 2 Associado a Receptor de TNF/farmacologia , Fator 5 Associado a Receptor de TNF/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Colo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , RNA Mensageiro/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças
4.
Phytomedicine ; 110: 154608, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586205

RESUMO

BACKGROUND: Mitochondria are the energy factories of cells with the ability to modulate the cell cycle, cellular differentiation, signal transduction, growth, and apoptosis. Existing drugs targeting mitochondria in cancer treatment have disadvantages of drug resistance and side effects. Phytochemicals, which are widely found in plants, are bioactive compounds that could facilitate the development of new drugs for gastric cancer. Studies have shown that some phytochemicals can suppress the development of gastric cancer. METHODS: We searched for data from PubMed, China National Knowledge Infrastructure, Web of Science, and Embase databases from initial establishment to December 2021 to review the mechanism by which phytochemicals suppress gastric cancer cell growth by modulating mitochondrial function. Phytochemicals were classified and summarized by their mechanisms of action. RESULTS: Phytochemicals can interfere with mitochondria through several mechanisms to reach the goal of promoting apoptosis in gastric cancer cells. Some phytochemicals, e.g., daidzein and tetrandrine promoted cytochrome c spillover into the cytoplasm by modulating the members of the B-cell lymphoma-2 protein family and induced apoptotic body activity by activating the caspase protein family. Phytochemicals (e.g., celastrol and shikonin) could promote the accumulation of reactive oxygen species and reduce the mitochondrial membrane potential. Several phytochemicals (e.g., berberine and oleanolic acid) activated mitochondrial apoptotic submission via the phosphatidylinositol-3-kinase/Akt signaling pathway, thereby triggering apoptosis in gastric cancer cells. Several well-known phytochemicals that target mitochondria, including berberine, ginsenoside, and baicalein, showed the advantages of multiple targets, high efficacy, and fewer side effects. CONCLUSIONS: Phytochemicals could target the mitochondria in the treatment of gastric cancer, providing potential directions and evidence for clinical translation. Drug discovery focused on phytochemicals has great potential to break barriers in cancer treatment.


Assuntos
Berberina , Neoplasias Gástricas , Humanos , Berberina/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Mitocôndrias , Transdução de Sinais , Apoptose , Compostos Fitoquímicos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral
5.
Toxics ; 10(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36355956

RESUMO

Hepatotoxicity brought on by acetaminophen (APAP) is significantly impacted by mitochondrial dysfunction. Mitophagy, particularly PINK1-mediated mitophagy, maintains the stability of cell function by eliminating damaged mitochondria. One of the most prevalent dietary polyphenols, chlorogenic acid (CGA), has been shown to have hepatoprotective properties. It is yet unknown, nevertheless, whether its defense against hepatocyte apoptosis involves triggering PINK1-mediated mitophagy. In vitro and in vivo models of APAP-induced hepatotoxicity were established to observe CGA's effect and mechanism in preventing hepatotoxicity in the present study. Serum aminotransferase levels, mouse liver histology, and the survival rate of HepG2 cells and mice were also assessed. The outcomes showed that CGA could reduce the activities of serum enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH), and alleviate liver injury in mice. It could also significantly increase the cell viability of HepG2 cells and the 24-h survival rate of mice. TUNEL labeling and Western blotting were used to identify the hepatocyte apoptosis level. According to data, CGA could significantly reduce liver cell apoptosis in vivo. Additionally, Tom20 and LC3II colocalization in mitochondria may be facilitated by CGA. CGA considerably increased the levels of genes and proteins associated with mitophagy (PINK1, Parkin, LC3II/LC3I), while considerably decreasing the levels of p62 and Tom20, suggesting that it might activate PINK1/Parkin-mediated mitophagy in APAP-induced liver damage. Additionally, the protection of CGA was reduced when PINK1 was knocked down by siPINK1 in HepG2 cells, and it did not upregulate mitophagy-related proteins (PINK1, Parkin, LC3II/LC3I). In conclusion, our findings revealed that long-term consumption of food-derived CGA could prevent APAP hepatotoxicity via increasing PINK1-dependent mitophagy and inhibiting hepatocyte apoptosis.

6.
Contrast Media Mol Imaging ; 2022: 3517020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051934

RESUMO

Pure plant extract luteolin has been demonstrated to possess numerous biological and immunological effects. However, how luteolin affects mice alveolar macrophages' self-renewal and polarization closely related to inflammatory and immunomodulatory is still unknown. In our study, the transcriptomic analysis showed that several self-renewal-related pathways in luteolin-pretreated alveolar macrophages were inhibited compared to the granulocyte-macrophage colony-stimulating factor (GM-CSF)-treated group. Ki-67 staining and EdU assay indicated that luteolin inhibited GM-CSF-induced alveolar macrophage proliferation. Moreover, GM-CSF-induced expressions of c-Myc and KLF4 were significantly suppressed by luteolin at transcriptional and protein levels. Besides, we found that luteolin promoted M1 macrophage polarization induced by LPS plus IFN-γ. At the same time, it inhibited M2 macrophage polarization induced by IL-4 in both alveolar and bone marrow-derived macrophages by detecting macrophage polarization-related gene expressions at mRNA and protein levels. We found that luteolin inhibited self-renewal and altered the polarization of primary alveolar macrophages. Taken together, our data will aid in a better understanding of the immunomodulatory effects of luteolin on the primary alveolar macrophages.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Macrófagos Alveolares , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Luteolina/metabolismo , Luteolina/farmacologia , Macrófagos/metabolismo , Camundongos
8.
Cell Mol Biol Lett ; 27(1): 61, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883026

RESUMO

BACKGROUND: Cisplatin (CDDP) is commonly used to treat non-small cell lung cancer (NSCLC), but the appearance of drug resistance greatly hinders its efficacy. Borneol may promote drug absorption; however, synergism between borneol and CDDP in suppressing NSCLC is not clearly understood. Hence, we investigated borneol as a novel chemosensitizer to support chemotherapeutic efficacy and reduce side effects. METHODS: We compared viability after exposure to d-borneol, l-borneol, and synthetic borneol in two NSCLC cell lines, A549 and H460, and selected the most sensitive cells. We then assessed synergy between borneol forms and CDDP in cisplatin-resistant NSCLC cells, H460/CDDP. Next, we identified effective concentrations and exposure times. Subsequently, we evaluated cell migration via wound healing and cell proliferation via clone formation assay. Then, we focused on P-glycoprotein (P-gp) function, cell cycle, apoptosis, and RNA sequencing to elucidate underlying molecular mechanisms for synergy. Finally, we used an H460/CDDP xenograft tumor model to verify antitumor activity and safety in vivo. Data were examined using one-way analysis of variance (ANOVA) for multiple datasets or t-test for comparisons between two variables. RESULTS: d-Borneol was more effective in H460 than A549 cells. d-Borneol combined with CDDP showed greater inhibition of cell proliferation, migration, and clone formation in H460/CDDP cells than CDDP alone. RNA sequencing (RNA-seq) analysis identified differentially expressed genes enriched in cell cycle pathways. The impact of d-borneol on CDDP chemosensitivity involved arrest of the cell cycle at S phase via p27/p21-mediated cyclinA2/D3-CDK2/6 signaling and activation of intrinsic apoptosis via p21-mediated Bax/Bcl-2/caspase3 signaling. Further, d-borneol ameliorated drug resistance by suppressing levels and activity of P-gp. Cotreatment with d-borneol and CDDP inhibited tumor growth in vivo and reduced CDDP-caused liver and kidney toxicity. CONCLUSIONS: d-Borneol increased the efficacy of cisplatin and reduced its toxicity. This compound has the potential to become a useful chemosensitizer for drug-resistance NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Canfanos , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
BMC Complement Med Ther ; 22(1): 188, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840932

RESUMO

BACKGROUND: Ginsenoside Rg3 (GRg3) is one of the main active ingredients in Chinese ginseng extract and has various biological effects, such as immune-enhancing, antitumour, antiangiogenic, immunomodulatory and anti-inflammatory effects. This study aimed to investigate the therapeutic effect of GRg3 on gastric precancerous lesion (GPL) induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and the potential mechanism of action. METHODS: The MNNG-ammonia composite modelling method was used to establish a rat model of GPL. Histopathological changes in the rat gastric mucosa were observed by pathological analysis using haematoxylin-eosin staining to assess the success rate of the composite modelling method. Alcian blue-periodic acid Schiff staining was used to observe intestinal metaplasia in the rat gastric mucosa. Apoptosis was detected in rat gastric mucosal cells by terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling staining. The production level of reactive oxygen species (ROS) was determined by the dihydroethidium fluorescent probe method, and that of TP53-induced glycolysis and apoptosis regulator (TIGAR) protein was determined by immunohistochemical staining and western blotting. The production levels of nicotinamide adenine dinucleotide phosphate (NADP) and glucose-6-phosphate dehydrogenase (G6PDH) were determined by an enzyme-linked immunosorbent assay, and that of glutathione (GSH) was determined by microanalysis. RESULTS: GRg3 significantly alleviated the structural disorganization and cellular heteromorphism in the form of epithelial glands in the gastric mucosa of rats with GPL and retarded the progression of the disease. Overexpression of TIGAR and overproduction of NADP, GSH and G6PDH occurred in the gastric mucosal epithelium of rats with GPL, which in turn led to an increase in the ROS concentration. After treatment with GRg3, the expression of TIGAR and production of NADP, GSH G6PDH decreased, causing a further increase in the concentration of ROS in the gastric mucosal epithelium, which in turn induced apoptosis and played a role in inhibiting the abnormal proliferation and differentiation of gastric mucosal epithelial cells. CONCLUSION: Grg3 can induce apoptosis and inhibit cell proliferation in MNNG-induced GPL rats. The mechanism may be related to down-regulating the expression levels of TIGAR and production levels of GSH, NADP and G6PD, and up-regulating the concentration of ROS.


Assuntos
Metilnitronitrosoguanidina , Lesões Pré-Cancerosas , Animais , Apoptose , Proteínas Reguladoras de Apoptose/efeitos adversos , Proteínas Reguladoras de Apoptose/metabolismo , Proliferação de Células , Ginsenosídeos , Glicólise , Metilnitronitrosoguanidina/efeitos adversos , NADP/efeitos adversos , NADP/metabolismo , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/tratamento farmacológico , Lesões Pré-Cancerosas/patologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 47(11): 3038-3048, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35718528

RESUMO

Based on the brain-gut axis, the present study investigated the effect of Huanglian Houpo Decoction(HLHPD) in the treatment of ulcerative colitis(UC) and explored the mechanism in the regulation of 5-hydroxytryptamine(5-HT), substance P(SP), and vasoactive intestinal peptide(VIP) using modern technologies and molecular docking. Sixty male C57 BL/6 J mice were randomly divided into a blank control group, a model group, a sulfasalazine(SASP) group, and high-(5.00 g·kg~(-1)), medium-(2.50 g·kg~(-1)), and low-dose(1.25 g·kg~(-1)) HLHPD groups. The UC model was induced by oral administration of water containing 3% dextran sulfate sodium salt(DSS) in mice except those in the blank control group. After HLHPD was administered for 10 days, the mice were sacrificed for sample collection. Morphological changes of colon tissues were observed by HE staining. The expression of 5-HT, SP, VIP, tumor necrosis factor α(TNF-α), interleukin-6(IL-6), and interleukin-1ß(IL-1ß) in the hypothalamus, serum, and colon was determined by the enzyme-linked immunosorbent assay(ELISA). The expression of tryptophan hydroxylase 1(TPH1), SP, and VIP in colon tissues was evaluated by immunohistochemistry. The expression of brain-gut peptide receptors, such as 5-HT3 A, neurokinin receptor 1(NK-1 R), and VIP receptor 1(VPAC1) in colon tissues was investigated by Western blot. The binding affinity of the brain-gut peptide receptors to the main components of HLHPD was analyzed by molecular docking. After HLHPD intervention, UC mice showed increased body weight, reduced DAI score and occult blood, prolonged colon, down-regulated levels of TNF-α, IL-1ß, and IL-6 in colon tissues, and relieved pathological damage in the colon. The VIP levels in the colon were significantly up-regulated in the HLHPD groups. The high-and medium-dose HLHPD could significantly down-regulated SP and 5-HT in colon tissues and 5-HT in the serum, and up-regulated the VIP in the serum. The high-dose HLHPD group could down-regulate 5-HT and up-regulate VIP in the hypothalamus. It is suggested that HLHPD can reverse the levels of brain-gut peptides in UC mice to varying degrees. Correlation analysis results suggested that the expression levels of brain-gut peptides in the hypothalamus, serum, and colon tissues were related to inflammatory factors. Molecular docking results showed that berberine, coptisine, and epiberberine were presumedly the material basis for HLHPD in regulating the levels of 5-HT3 A, NK-1 R, and VPAC1. The main components of HLHPD may reduce colonic inflammation and pathological damage of colon tissues by regulating the activity of brain-gut peptides and their receptors, thereby reducing DSS-induced colitis in mice.


Assuntos
Colite Ulcerativa , Animais , Eixo Encéfalo-Intestino , Colite Ulcerativa/tratamento farmacológico , Colo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Serotonina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Phytomedicine ; 97: 153927, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35030387

RESUMO

BACKGROUND: In folk medicine Coptis chinensis Franch (Huanglian in Chinese, HL) and Magnoliae officinalis (Houpo, HP) have been used to treat gastrointestinal disorders over hundreds of years, such as ulcers and inflammation. PURPOSE: To investigate the therapeutic effects of HL and HP on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis (UC) rats, and investigated its effect on the intestinal flora of UC rats. METHOD: TNBS 40 mg/kg was utilized to establish UC model. Rats were sacrificed after gavage for 7 days. Body weight loss, disease activity index (DAI), colonic mucosal damage index (CMDI) and histopathology were measured. Intestinal content samples were collected, and analyzed by 16 S rRNA sequencing. Western blot, immunohistochemistry and real-time polymerase chain reaction were used to evaluate the regulation mechanism of HL+HP in UC model rats. RESULTS: The results showed that the DAI score, CMDI score and histological score were significantly decreased in each group. The symptoms of diarrhea, hematochezia, colonic mucosal injury and congestion and edema were improved. Sequencing results of intestinal flora showed that the abundance of probiotics such as Akkermansia and Blautia was increased in HL group and HL+HP group, while probiotics such as Allobaculum and Alloprevotella were increased in HP group. The intestinal pathogenic bacteria such as Escherichia-Shigella and Clostridium_sensu_stricto_1 were decreased. In addition, HL+HP could also inhibit the inflammatory response and protect the integrity of the tight junction to play an anti-UC effect. CONCLUSION: Coptis chinensis Franch and Magnolia officinalis might prevent intestinal barrier damage by regulating intestinal flora imbalance and inhibit the inflammatory response.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Magnolia , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colo , Coptis chinensis , Modelos Animais de Doenças , Ratos , Ácido Trinitrobenzenossulfônico
12.
J Ethnopharmacol ; 284: 114780, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34728318

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: ShexiangZhuifeng Analgesic Plaster (SZAP) is a traditional Chinese medicine and transdermal formulation composed of many Chinese herbs and active compounds. SZAP was recently approved by the China Food and Drug Administration for the treatment of pain associated with osteoarticular diseases and is preferred by most rheumatoid arthritis patients in China. However, its mechanism has not been elucidated in detail. AIM OF THE STUDY: We sought to determine the analgesic effect of SZAP in collagen-induced arthritis (CIA) rats and explore the underlying mechanisms of pain transmission, such as via the TRPV1 and P2X3 receptors. METHODS: After CIA was established, rats were treated with SZAP for 7 days. Paw thickness, arthritis score, and haematoxylin and eosin staining were used to evaluate the effectiveness of SZAP. Paw withdrawal threshold (PWT) and tail-flick latency (TFL) were used to estimate the analgesic effect of SZAP. The levels of PGE2, BK, 5-HT, SP, and CGRP in the serum and synovium were determined using ELISA kits, and ATP in the synovium was measured using HPLC. The expression of TRPV1 and P2X3 in the DRG was detected using western blotting and immunofluorescence. TRPV1 and P2X3 agonists were further used to determine the analgesic effects of SZAP on CIA rats based on PWT and TFL. RESULTS: SZAP not only significantly ameliorated arthritis scores and paw thickness by improving the pathological damage of synovial joints, but also remarkably alleviated pain in CIA rats. Further, treatment with SZAP significantly reduced peripheral 5-HT, PGE2 BK, SP, CGRP, and ATP. Additionally, the expression of TRPV1 and P2X3 in the DRG was markedly downregulated by SZAP. Interestingly, the analgesic effect of SZAP was weakened (reduction of PWT and TFL) when TRPV1 and P2X3 were activated by capsaicin or α,ß-meATP, respectively. CONCLUSION: SZAP ameliorates rheumatalgia by suppressing hyperalgesia and pain transmission through the inhibition of TRPV1 and P2X3 in the DRG of CIA rats.


Assuntos
Artrite Experimental/tratamento farmacológico , Colágeno/toxicidade , Medicamentos de Ervas Chinesas/farmacologia , Fitoterapia , Receptores Purinérgicos P2X3/metabolismo , Canais de Cátion TRPV/metabolismo , Administração Tópica , Animais , Capsaicina/farmacologia , Diclofenaco/administração & dosagem , Diclofenaco/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Canais de Cátion TRPV/genética
13.
Biomed Pharmacother ; 145: 112086, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34799220

RESUMO

Ginsenoside Rg3 (GRg3) is a ginsenoside extracted from Panax ginseng. GRg3 displays multiple pharmacological properties, such as antitumor, anti-inflammatory, antioxidative and antifibrotic properties. However, whether GRg3 inhibits angiogenesis in gastric precancerous lesions (GPLs) and the possible mechanisms remain unknown. GRg3 attenuated gastric intestinal metaplasia and gastric dysplasia, the hallmark of GPL pathology, in rats with MNNG-ammonia compound induced GPLs. Increased CD34+ microvessel density and VEGF expression, which indicate the presence of angiogenesis, were evident in the rats with GPLs. GRg3 administration reduced VEGF protein expression and CD34+ microvessel density. In addition, GRg3 was capable of attenuating microvascular abnormalities. Data analysis revealed that enhanced protein expression of GLUT1, GLUT3 and GLUT4 were present in both human and animal GPL specimens. The administration of GRg3 caused significant decreases in the mRNA and protein expression levels of GLUT1 and GLUT4 in the rats with GPLs. However, the GRg3-treated rats with GPLs did not demonstrate regulatory effects on GLUT3, GLUT6, GLUT10, and GLUT12. Consistent with in vitro results, GRg3 administration significantly reduced the protein expression levels of GLUT1 and GLUT4 in both AGS and HGC-27 human gastric cancer cells in vitro. In conclusion, GRg3 can attenuate angiogenesis and temper microvascular abnormalities in rats with GPLs, which may be associated with its inhibition on the aberrant activation of GLUT1 and GLUT4.


Assuntos
Ginsenosídeos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Lesões Pré-Cancerosas/tratamento farmacológico , Neoplasias Gástricas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 4/genética , Humanos , Masculino , Neovascularização Patológica/genética , Lesões Pré-Cancerosas/genética , Ratos , Ratos Sprague-Dawley , Estudos Retrospectivos , Neoplasias Gástricas/genética
14.
Front Pharmacol ; 12: 682713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594214

RESUMO

Background: Seeking novel and effective therapies for gastric precancerous lesions (GPL) is crucial to reducing the incidence of gastric cancer. Ginsenoside Rb1 (GRb1) is a major ginsenoside in ginseng and has been proved to possess multiple bioactivities. However, whether GRb1 could protect against GPL and the underlying mechanisms have not been explored. Methods: We evaluated the effects of GRb1 on gastric precancerous lesions in rats on macroscopic, microscopic and ultramicroscopic levels. Then, an antibody array was employed to screen differential expression proteins (DEPs). Validation for the targeting DEP and investigation for the possible mechanism was conducted using immunohistochemistry, qRT-PCR, TUNEL apoptosis assay, immunoprecipitation and immunoblotting. Results: GRb1 was found to reverse intestinal metaplasia and a portion of dysplasia in the MNNG-induced GPL rats. The antibody array assay revealed seven DEPs in GPL rats as compared to control rats (5 DEPs were up-regulated, while two DEPs were down-regulated). Among the DEPs, ß-catenin, beta-NGF and FSTL1 were significantly down-regulated after GRb1 administration. Our validation results revealed that enhanced protein expression and nuclear translocation of ß-catenin were present in animal GPL samples. In addition, analysis of human gastric specimens demonstrated that ß-catenin up-regulation and nuclear translocation were significantly associated with advanced GPL pathology. GRb1 intervention not only decreased protein expression and nuclear translocation of ß-catenin, but interfered with ß-catenin/TCF4 interaction. Along with this, declined transcriptional and protein expression levels of downstream target genes including c-myc, cyclin D1 and Birc5 were observed in GRb1-treated GPL rats. Conclusion: GRb1 is capable of preventing the occurrence and progression of GPL, which might be contributed by diminishing protein expression and nuclear translocation of ß-catenin and interfering with ß-catenin/TCF4 interaction.

15.
Front Psychiatry ; 12: 696655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322042

RESUMO

Purpose: Previous association studies have investigated whether genetic polymorphisms in HTR1B influenced individuals' susceptibility to major depressive disorder (MDD), anti-depressant response (ADR) and suicidal behavior. However, equivocal evidence was obtained. In this meta-analysis, we aimed to examine the association of HTR1B polymorphisms with risk of MDD, ADR and suicidal behavior. Materials and Methods: Studies evaluating the association between HTR1B polymorphisms and risk of MDD, ADR and suicidal behavior were searched in Pubmed, Ovid Medline, web of science and China National Knowledge Infrastructure databases. Summary odds ratios (ORs), 95 % confidence intervals (CIs) and p-values were calculated using a fixed or random effects model. Results: Meta-analysis findings revealed a significantly increased risk of MDD with rs6296 GC and GC/CC genotypes (GC vs. GG: OR = 1.26, 95% CI, 1.07-1.48; GC/CC vs. GG: OR = 1.22, 95% CI, 1.04-1.43, respectively). Moreover, rs6298 CT genotype was significantly associated with an increased risk of suicidal behavior (CT vs. CC: OR = 1.48, 95% CI, 1.16-1.88). However, both rs6296 and rs130058 were not significant risk factors for lethal suicidal behavior. Conclusion: This meta-analysis identified that rs6296 and rs6298 in HTR1B may be significantly related to the risk of MDD and lethality of suicide attempts, respectively. Further studies are required to assess the markers in larger cohorts.

16.
Front Pharmacol ; 12: 607412, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967750

RESUMO

Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. Stroke is a disease with high prevalence and incidence, the pathogenesis is a complex cascade reaction. In recent years, it's reported that a vast number of natural products have demonstrated beneficial effects on stroke worldwide. Natural products have been discovered to modulate activities with multiple targets and signaling pathways to exert neuroprotection via direct or indirect effects on enzymes, such as kinases, regulatory receptors, and proteins. This review provides a comprehensive summary of the established pharmacological effects and multiple target mechanisms of natural products for cerebral ischemic injury in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications. In addition, the biological activity of natural products is closely related to their structure, and the structure-activity relationship of most natural products in neuroprotection is lacking, which should be further explored in future. Overall, we stress on natural products for their role in neuroprotection, and this wide band of pharmacological or biological activities has made them suitable candidates for the treatment of stroke.

17.
Front Pharmacol ; 12: 641894, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746762

RESUMO

At present, Stroke is still one of the leading causes of population death worldwide and leads to disability. Traditional Chinese medicine plays an important role in the prevention or treatment of stroke. l-borneol, a traditional Chinese medicine, has been used in China to treat stroke for thousands of years. However, its mechanism of action is unclear. After cerebral ischemia, promoting angiogenesis after cerebral ischemia and providing nutrition for the infarct area is an important strategy to improve the damage in the ischemic area, but it is also essential to promote neurogenesis and replenish new neurons. Here, our research shows that l-borneol can significantly improve the neurological deficits of pMCAO model rats, reduce cerebral infarction, and improve the pathological damage of cerebral ischemia. and significantly increase serum level of Ang-1 and VEGF, and significantly decrease level of ACE and Tie2 to promote angiogenesis. PCR and WB showed the same results. Immunohistochemistry also showed that l-borneol can increase the number of CD34 positive cells, further verifying that l-borneol can play a neuroprotective effect by promoting angiogenesis after cerebral ischemia injury. In addition, l-borneol can significantly promote the expression level of VEGF, BDNF and inhibit the expression levels of TGF-ß1 and MMP9 to promote neurogenesis. The above suggests that l-borneol can promote angiogenesis coupled neurogenesis by regulating Ang1-VEGF-BDNF to play a neuroprotective effect. Molecular docking also shows that l-borneol has a very high binding rate with the above target, which further confirmed the target of l-borneol to improve cerebral ischemic injury. These results provide strong evidence for the treatment of cerebral ischemia with l-borneol and provide reference for future research.

18.
Mol Med Rep ; 23(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33604685

RESUMO

Yuan­zhi­san (YZS) is a classic type of Traditional Chinese Medicine, which has been reported to aid in the treatment of Alzheimer's disease (AD). The present study aimed to investigate the effects of YZS on tau protein aggregation, a hallmark of AD pathology, and its possible mechanisms. The results demonstrated that YZS improved learning and memory abilities, and decreased the severity of AD pathology in ß­amyloid (Aß1­40)­induced AD rats. Moreover, YZS administration inhibited the hyperphosphorylation of tau protein at Ser199 and Thr231 sites. Several vital enzymes in the ubiquitin­proteasome system (UPS), including ubiquitin­activating enzyme E1a/b, ubiquitin­conjugating enzyme E2a, carboxyl terminus of Hsc70­interacting protein, ubiquitin C­236 terminal hydrolase L1 and 26S proteasome, were all significantly downregulated in AD rats, which indicated an impaired enzymatic cascade in the UPS. In addition, it was identified that YZS treatment partly increased the expression levels of these enzymes in the brains of AD rats. In conclusion, the present results suggested that YZS could effectively suppress the hyperphosphorylation of tau proteins, which may be partially associated with its beneficial role in restoring functionality of the UPS.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/genética , Medicamentos de Ervas Chinesas/farmacologia , Fragmentos de Peptídeos/genética , Agregados Proteicos/efeitos dos fármacos , Proteínas tau/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Ratos , Ubiquitina/genética
19.
Int J Legal Med ; 135(4): 1179-1190, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33523250

RESUMO

INTRODUCTION: The etiology of sudden infant death syndrome (SIDS) remains an unsolved problem. The aim of this meta-analysis is to investigate the potential association between monoamine oxidase A (MAOA) promoter variable number tandem repeat (VNTR) polymorphism and SIDS risk. METHODS: A systematic review and meta-analysis were conducted on studies from accessible electronic databases. Each VNTR variant was examined in each gender independently by comparing with the pooled results of other alleles. RESULTS: A total of six independent case-control studies including 1022 SIDS cases and 1839 controls were enrolled in this meta-analysis. In both of the whole populations and Caucasian populations, male infants with the low-MAOA-expression alleles (2R+3R) were found to exhibit a statistically significant increased risk of SIDS, whereas those with a 4R allele exhibited a reduced risk of SIDS. Besides, an increased risk of SIDS was detected in male Caucasian infants with 2R or 3R alleles. However, none of the allele or genotype variants was associated with SIDS in female victims. CONCLUSION: In male Caucasian infants, the low expression of MAOA promoter VNTR alleles (2R and 3R) is associated with an increased risk of SIDS, and the existence of the 4R allele could be regarded as a protective factor.


Assuntos
Alelos , Repetições Minissatélites , Monoaminoxidase/genética , Polimorfismo Genético , Regiões Promotoras Genéticas , Morte Súbita do Lactente/genética , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Lactente , Masculino , População Branca/genética
20.
Pharmacol Res ; 160: 105192, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32942018

RESUMO

Astragaloside IV (ASIV) is the essential active component of astragalus that has diverse biological activities. Previous research has suggested its potentially beneficial effects on diabetic nephropathies. However, its effects and protective mechanism remain unclear. In this study, we conducted a preclinical systematic review to evaluate the efficacy and potential mechanisms of ASIV in reducing kidney damage in diabetes mellitus (DM) models. Studies were searched from nine databases until January 2020. A random-effects model was used to calculate combined standardised mean difference estimates and 95 % confidence intervals. Risk of bias of studies was assessed using the Systematic Review Center for Laboratory Animal Experimentation risk of bias tool 10-item checklist. RevMan 5.3 software was used for statistical analysis. Twenty-three studies involving 562 animals were included in the meta-analysis. Studies quality scores ranged from 2 to 5. The ASIV group induced a marked decrease in serum creatinine (P < 0.00001), blood urea nitrogen (P < 0.00001), 24-h urine protein (P < 0.00001) and pathological score (P < 0.001) compared with the control group. The determined potential mechanisms of ASIV action were relieving oxidative stress, delaying renal fibrosis, anti-apoptosis and anti-inflammatory action. We conclude that ASIV exerts renal protective effects in animals with DM through multiple signalling pathways.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Saponinas/uso terapêutico , Triterpenos/uso terapêutico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA