RESUMO
Wishbone flower (Torenia fournieri L.) is a common ornamental plant for flower bed in Taiwan. In August 2018, root and stem rot of wishbone flower occurred on the flower bed in the campus of National Chung Hsing University, Taichung city, with 100% incidence. Symptoms were dark brown discoloration of basal stems and brown necrosis of roots. Lesions from base of stems were excised into 5 mm long fragments, which were then surface sterilized in 1% sodium hydrochloride for 1 min, rinsed in sterile distilled water, dried on filter paper and thereafter placed onto 2% water agar. After 24 h, hyphae characteristic of Rhizoctonia (Sneh et al. 1991) appeared and dominated in every isolation. Hyphal tips were transferred to potato dextrose agar (PDA). After 5 days of incubation at 28°C, characteristic brown colonies of Rhizoctonia (Sneh et al. 1991) were observed. Hyphal width was 4.29±0.52 µm. No sclerotia were visibly present after 21 days of growth on PDA at 28°C. Hyphae were stained by 0.3% safranin-O and 1% KOH. There were two nuclei in each hyphal compartment, suggesting a binucleate Rhizoctonia fungus. ITS sequence has been used as the best tool to identify specific anastomosis group (AG) of Rhizoctonia as shown by Sharon et al. (2006, 2008). ITS sequence was amplified using the primers Bd1a and ITS4 (Goka et al. 2009; White et al. 1990). Blast search analysis of this acquired sequence (acc. no. LC498494) revealed the highest similarity (98.75 to 99.83%) with the reference sequences (acc. nos. AB286934, AB286933, and AB196653) of binucleate Rhizoctonia AG-L, namely Ceratobasidium sp. AG-L. Pathogenicity test was carried out using seedlings of 4-week-old wishbone flower each grown in a pot of 6.35 cm diameter. To prepare the inoculum, a PDA agar block (6 mm in diameter) excised from the growing front of 5-day-old colony was transferred into a flask with 200 ml of potato dextrose broth (PDB) incubated in a shaker at 26°C and 120 rpm for 6 days. The PDB broth was then blended into slurry. Ten pots each with a seedling were inoculated by pouring 50 ml of slurry onto the potting medium. Five pots were served as the controls by pouring PDB only. Pots were maintained in a greenhouse (26 to 33°C). Three days after inoculation, all inoculated plants exhibited symptom of root and stem rot. The same fungus was reisolated and confirmed by sequencing rDNA-ITS. This is the first report of root and stem rot of wishbone flower caused by binucleate Rhizoctonia AG-L in Taiwan and in the world. Although this is the second cases, since Wang and Hsieh (1993), for binucleate Rhizoctonia AG-L to be pathogenic, this study shows that this fungus has the potential to cause damages and is worth of further investigations.