Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 739
Filtrar
1.
Glob Heart ; 19(1): 45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737730

RESUMO

Objective: Skeletal muscle mass and cardiac structure change with age. It is unclear whether the loss of skeletal muscle mass (SMM) is accompanied by a decrease in heart mass loss. The aim of this study is to investigate the relationship of left ventricular mass (LVM) with sarcopenia and its severity in elderly inpatients. Methods: Seventy-one sarcopenia subjects and 103 non-sarcopenia controls were enrolled in this study. Bioelectrical impedance analysis, handgrip strength, and 5-time chair stand test were used to evaluate SMM, muscle strength, and physical performance, respectively. Myocardial structure and function were assessed by echocardiography. Sarcopenia was diagnosed according to the Asian Working Group for Sarcopenia criteria 2019. Results: Sarcopenic patients had smaller left ventricular sizes and LVM than non-sarcopenic controls. Severe sarcopenic patients had smaller left ventricular sizes and LVM than non-severe sarcopenic patients. In univariate regression analysis, body mass index (BMI), cardiac size, and LVM were positively correlated with SMM or SMI. In multivariate regression analysis, BMI and LVM were independently correlated with SMM and SMI. The combined measurement of LVM and BMI predicts sarcopenia with 66.0% sensitivity and 88.7% specificity (AUC: 0.825; 95% CI: (0.761, 0.889); p < 0.001). Conclusion: In hospitalized elderly patients, decreased left ventricular mass is associated with sarcopenia and its severity, and the combined measurement of LVM and BMI has a predictive value for sarcopenia.


Assuntos
Ecocardiografia , Ventrículos do Coração , Sarcopenia , Índice de Gravidade de Doença , Humanos , Sarcopenia/fisiopatologia , Sarcopenia/diagnóstico por imagem , Sarcopenia/diagnóstico , Sarcopenia/epidemiologia , Masculino , Feminino , Idoso , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Pacientes Internados , Idoso de 80 Anos ou mais , Função Ventricular Esquerda/fisiologia , Músculo Esquelético/fisiopatologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Índice de Massa Corporal
2.
Food Chem ; 453: 139571, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38761741

RESUMO

The traditional strategies of chemical catalysis and biocatalysis for producing octenyl succinic anhydride modified starch can only randomly graft hydrophobic groups on the surface of starch, resulting in unsatisfactory emulsification performance. In this work, a lipase-inorganic hybrid catalytic system with multi-scale flower like structure is designed and applied to spatially selective catalytic preparation of ocenyl succinic anhydride modified starch. With the appropriate floral morphology and petal density, lipases distributed in the "flower center" can selectively catalyze the grafting of hydrophobic groups in a spatial manner, the hydrophobic groups are concentrated on one side of starch particles. The obtaining OSA starch exhibits excellent emulsifying property, and the pickering emulsion has good protective effect on the embedded curcumin. This work provides a direction for the development of high-performance starch-based emulsifiers for the food and pharmaceutical industries, which is of great significance for improving the preparation and emulsification theory research of modified starch.

3.
Gene ; : 148563, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754569

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a special type of cardiovascular disease, termed as a situation of abnormal myocardial structure and function that occurs in diabetic patients. However, the most fundamental mechanisms of DCM have not been fully explicated, and useful targets for the therapeutic strategies still need to be explored. METHODS: In the present study, we combined bioinformatics analysis and in vitro experiments throughout the process of DCM. Differentially Expressed Genes (DEGs) analysis was performed and the weighted gene co-expression network analysis (WGCNA) was constructed to determine the crucial genes that were tightly connected to DCM. Additionally, Functional enrichment analysis was conducted to define biological pathways. To identify the specific molecular mechanism, the human cardiomyocyte cell line (AC16) was stimulated by high glucose (HG, 50 mM D-glucose) and used to imitate DCM condition. Then, we tentatively examined the effect of high glucose on cardiomyocytes, the expression levels of crucial genes were further validated by in vitro experiments. RESULTS: Generally, NPPA, IGFBP5, SERPINE1, and C3 emerged as potential therapeutic targets. Functional enrichment analysis performed by bioinformatics indicated that the pathogenesis of DCM is mainly related to heart muscle contraction and calcium (Ca2+) release activation. In vitro, we discovered that high glucose treatment induced cardiomyocyte injury and exacerbated mitochondrial dysfunction remarkably. CONCLUSION: Our research defined four crucial genes, as well as determined that mitochondrial function impairment compromises calcium homeostasis ultimately resulting in contractile dysfunction is a central contributor to DCM progression. Hopefully, this study will offer more effective biomarkers for DCM diagnosis and treatment.

4.
J Ethnopharmacol ; 330: 118254, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38670409

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gout, a painful joint disease with a prevalence ranging from 0.86% to 2.2% in China over the past decade. Traditional medicine has long utilized the medicinal and edible Piper longum L. (PL) fruit spikes for treating gout and other joint conditions like rheumatoid arthritis. However, the exact mechanisms behind its effectiveness remain unclear. AIM OF THE STUDY: This study aimed to investigate the potential of alcoholic extracts from PL fruit spikes as a safe and effective treatment for gout. We used a combined network pharmacology and experimental validation approach to evaluate the mechanisms behind the anti-gout properties of PL. MATERIALS AND METHODS: UPLC-Q/TOF-MS analysis determined the major components of PL. Subsequently, network pharmacology analysis predicted potential molecular targets and related signaling pathways for the anti-gout activity of PL. Molecular docking simulations further explored the interactions between PL compounds and proteins and characterized the properties of potential bioactive secondary metabolites. Mouse models of air pouch inflammation and hyperuricemia were further established, and the anti-gout mechanism of PL was confirmed by examining the expression of proteins related to the MAPK and PI3K-AKT pathways in the tissue. RESULTS: Our analysis revealed 220 bioactive secondary metabolites within PL extracts. Network pharmacology and molecular docking results indicated that these metabolites primarily combat gout by modulating the PI3K-AKT and MAPK signaling pathways. In vivo experiments have also proven that PL at a dose of 100 mg/kg can optimally reduce acute inflammation of gout and kidney damage caused by high uric acid. The anti-gout mechanism involves the PI3K-AKT/MAPK signaling pathway and its downstream NF-κB pathway. CONCLUSION: This study provides compelling evidence for PL's therapeutic potential in gout management by modulating key inflammatory pathways. The findings offer a strong foundation for future clinical exploration of PL as a gout treatment option.


Assuntos
Gota , Fosfatidilinositol 3-Quinases , Piper , Extratos Vegetais , Proteínas Proto-Oncogênicas c-akt , Animais , Piper/química , Gota/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Camundongos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos , Farmacologia em Rede , Hiperuricemia/tratamento farmacológico , Camundongos Endogâmicos C57BL , Supressores da Gota/farmacologia , Supressores da Gota/uso terapêutico , Supressores da Gota/isolamento & purificação , Frutas/química , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
5.
J Gynecol Oncol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38670562

RESUMO

OBJECTIVE: Cervical cancer (CC) is a serious gynecologic health issue for women worldwide. Long non-coding RNA (lncRNA) has been well-documented in controlling malignant behavior of various cancer cells. The role of lncRNA STARD7-AS1 in regulating CC cell proliferation and autophagy and its possible mechanism were investigated in this work. METHODS: RNA expression and protein levels were quantified by reverse transcription quantitative polymerase chain reaction and western blotting. The location of STARD7-AS1 in CC cells was examined using subcellular fraction assays. Cell Counting Kit-8 assays and colony forming assays were performed to measure CC cell viability and proliferation. Autophagy in CC cells was evaluated using macrophage-derived chemokine (MDC) staining and transmission electron microscopy. The binding between microRNA (miR)-31-5p and STARD7-AS1 (or thioredoxin-interacting protein [TXNIP]) was determined by performing luciferase reporter, RNA pull-down or RNA immunoprecipitation assays. RESULTS: STARD7-AS1 overexpression significantly suppressed CC cell viability and proliferation while notably inducing autophagy. STARD7-AS1 upregulated TXNIP expression via interaction with miR-31-5p. In addition, the effects of STARD7-AS1 on CC cell proliferation and autophagy were reversed by TXNIP silencing. The suppressive effect of STARD7-AS1 overexpression on phosphorylated levels of mTOR and S6K1 was countervailed by TXNIP deficiency. CONCLUSION: In conclusion, lncRNA STARD7-AS1 inhibits CC cell proliferation and promotes cell autophagy by targeting the miR-31-5p/TXNIP axis to inactivate the mTOR signaling.

6.
BMC Biol ; 22(1): 95, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679719

RESUMO

BACKGROUND: The medial prefrontal cortex (mPFC) is involved in complex functions containing multiple types of neurons in distinct subregions with preferential roles. The pyramidal neurons had wide-range projections to cortical and subcortical regions with subregional preferences. Using a combination of viral tracing and fluorescence micro-optical sectioning tomography (fMOST) in transgenic mice, we systematically dissected the whole-brain connectomes of intratelencephalic (IT) and pyramidal tract (PT) neurons in four mPFC subregions. RESULTS: IT and PT neurons of the same subregion projected to different target areas while receiving inputs from similar upstream regions with quantitative differences. IT and PT neurons all project to the amygdala and basal forebrain, but their axons target different subregions. Compared to subregions in the prelimbic area (PL) which have more connections with sensorimotor-related regions, the infralimbic area (ILA) has stronger connections with limbic regions. The connection pattern of the mPFC subregions along the anterior-posterior axis showed a corresponding topological pattern with the isocortex and amygdala but an opposite orientation correspondence with the thalamus. CONCLUSIONS: By using transgenic mice and fMOST imaging, we obtained the subregional preference whole-brain connectomes of IT and pyramidal tract PT neurons in the mPFC four subregions. These results provide a comprehensive resource for directing research into the complex functions of the mPFC by offering anatomical dissections of the different subregions.


Assuntos
Conectoma , Camundongos Transgênicos , Córtex Pré-Frontal , Células Piramidais , Animais , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/citologia , Células Piramidais/fisiologia , Camundongos , Masculino
7.
ACS Sens ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682311

RESUMO

The development of chemiluminescence-based innovation sensing systems and the construction of a sensing mechanism to improve the analytical performance of compounds remain a great challenge. Herein, we fabricated an advanced oxidation processes pretreated chemiluminescence (AOP-CL) sensing system via the introduction of cobalt-modified black phosphorus nanosheets (Co@BPNs) to achieve higher efficient thiabendazole (TBZ) detection. Co@BPNs, enriched with lattice oxygen, exhibited a superior catalytic performance for accelerating the decomposition of ferrate (VI). This Co@BPNs-based ferrate (VI) AOP system demonstrated a unique ability to selectively decompose TBZ, resulting in a strong CL emission. On this basis, a highly selective and sensitive CL sensing platform for TBZ was established, which exhibited strong resistance to common ions and pesticides interference. This was successfully applied to detecting TBZ in environmental samples such as tea and kiwi fruits. Besides, the TBZ detection mechanism was explored, Co@BPNs-based ferrate (VI) AOP system produced a high yield of ROS (mainly 1O2), which oxidized the thiazole-based structure of TBZ, generating chemical energy that was transferred to Co@BPNs via a chemical electron exchange luminescence (CIEEL) mechanism, leading to intense CL emission. Notably, this study not only proposed an innovative approach to enhance the chemical activity and CL properties of nanomaterials but also offered a new pathway for designing efficient CL probes for pollutant monitoring in complex samples.

8.
Stem Cell Res ; 76: 103370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428347

RESUMO

Restrictive cardiomyopathy (RCM) is a rare cardiomyopathy characterized by diastolic dysfunction, which affects cardiac systolic function. We successfully established human induced pluripotent stem cells (hiPSCs) from peripheral blood mononuclear cells of 24-year-old male with restrictive cardiomyopathy (RCM). The patient-derived hiPSCs carried heterozygous mutation of CRYAB gene (c.326A > G, p.D109G), which was consistent with clinical whole exon sequencing results. We confirmed the pluripotency, multipotential differentiation and karyotype of hiPSCs. The hiPSCs will be useful for studying the pathogenesis of RCM caused by CRYAB (c.326A > G) mutation.


Assuntos
Cardiomiopatias , Cardiomiopatia Restritiva , Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Adulto Jovem , Cardiomiopatias/genética , Cardiomiopatia Restritiva/genética , Leucócitos Mononucleares , Mutação/genética
9.
Biochem Pharmacol ; 223: 116142, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499110

RESUMO

BACKGROUND: The therapeutic value and long-term application of doxorubicin (DOX) were hampered by its severe irreversible cardiotoxicity. Phospholipase C epsilon 1 (PLCE 1) was reported as a new member of the phospholipase C (PLC) family which controls the level of phosphoinositides in cells. Pyroptosis is a newly discovered inflammatory type of regulated cell death. Recent studies have consolidated that chemotherapeutic drugs lead to pyroptosis. Additionally, the phosphoinositide signaling system has remarkable effects on the execution of cell death. We aim to investigate the role of PLCE1 and the mechanism of pyroptosis from the context of DOX-induced cardiotoxicity. METHODS: In the current study, in vitro and in vivo experiments were performed to dissect the underlying mechanism of cardiomyocyte pyroptosis during DOX-induced cardiac injury. The molecular mechanism of PLCE1 was identified by the human cardiomyocyte AC16 cell line and C57BL/6 mouse model. RESULTS: The results here indicated that PLCE1 high expressed and pyroptotic cell death presented in cardiomyocytes after DOX application, which was negatively correlated to heart function. DOX-induced cell model disclosed pyroptosis mediated by Gasdermin E (GSDME) protein and involved in mitochondrial damage. Conversely, the deletion of PLCE1 ameliorated mitochondrial dysfunction by suppressing ROS accumulation and reversing mitochondrial membrane potential, and then increased cell viability effectively. More importantly, the in vivo experiment demonstrated that inhibition of PLCE1 reduced pyroptotic cell death and improved heart effect. CONCLUSIONS: We discovered firstly that PLCE1 inhibition protected cardiomyocytes from DOX-induced pyroptotic injury and promoted cardiac function. This information offers a theoretical basis for promising therapy.


Assuntos
Doenças Mitocondriais , Fosfoinositídeo Fosfolipase C , Piroptose , Camundongos , Animais , Humanos , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Camundongos Endogâmicos C57BL , Doxorrubicina/farmacologia , Doenças Mitocondriais/metabolismo , Miócitos Cardíacos , Estresse Oxidativo
10.
MedComm (2020) ; 5(3): e475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463393

RESUMO

Senescence-associated microRNAs (SA-miRNAs) are important molecules for aging regulation. While many aging-promoting SA-miRNAs have been identified, confirmed aging-suppressive SA-miRNAs are rare, that impeded our full understanding on aging regulation. In this study, we verified that miR-708 expression is decreased in senescent cells and aged tissues and revealed that miR-708 overexpression can alleviate cellular senescence and aging performance. About the molecular cascade carrying the aging suppressive action of miR-708, we unraveled that miR-708 directly targets the 3'UTR of the disabled 2 (Dab2) gene and inhibits the expression of DAB2. Interestingly, miR-708-caused DAB2 downregulation blocks the aberrant mammalian target of rapamycin complex 1 (mTORC1) activation, a driving metabolic event for senescence progression, and restores the impaired autophagy, a downstream event of aberrant mTORC1 activation. We also found that AMP-activated protein kinase (AMPK) activation can upregulate miR-708 via the elevation of DICER expression, and miR-708 inhibitor is able to blunt the antiaging effect of AMPK. In summary, this study characterized miR-708 as an aging-suppressive SA-miRNA for the first time and uncovered a new signaling cascade, in which miR-708 links the DAB2/mTOR axis and AMPK/DICER axis together. These findings not only demonstrate the potential role of miR-708 in aging regulation, but also expand the signaling network connecting AMPK and mTORC1.

11.
ESC Heart Fail ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514992

RESUMO

AIMS: The benefits of lowering heart rate (HR) in heart failure (HF) with preserved ejection fraction (HFpEF) patients are still a matter of debate. This study aimed to investigate the relationship between changes in HR during hospitalization and cardiovascular (CV) events and all-cause death in hospitalized HFpEF patients. METHODS AND RESULTS: Hospitalized HF patients between January 2017 and December 2021 were consecutively enrolled in a national, multicentred, and prospective registry database, the China Cardiovascular Association Database-HF Center Registry. HF patients with a left ventricular ejection fraction of ≥50% were defined as HFpEF patients. The study analysed admission/discharge HR, change in HR during hospitalization (∆HR), and ∆HR ratio (∆HR/admission HR). The patients were categorized into three groups: no HR dropping group (ΔHR ratio > 0.0%), moderate HR dropping group (-15% < ΔHR ratio ≤ 0.0%), and excessive HR dropping group (ΔHR ratio ≤ -15%). All patients were followed up for 12 months. The primary endpoint was CV events (CV death or HF rehospitalization). The secondary endpoint was all-cause death. A total of 19 510 HFpEF patients (9750 males, mean age 71.9 ± 12.2 years) were included, with 4575 in the no HR dropping group, 8434 in the moderate HR dropping group, and 6501 in the excessive HR dropping group. Excessive HR dropping during hospitalization was significantly associated with an increased risk of CV events (17.1%) compared with the no HR dropping group (14.5%, P < 0.001) or the moderate HR dropping group (14.0%, P < 0.001), although all-cause mortality was similar among the three groups. After adjusting for multiple confounding factors, excessive HR dropping remained an independent predictor of increased CV event risk [hazard ratio 1.197, 95% confidence interval (CI) 1.078-1.328]. Subgroup analysis revealed that the prognostic impact of excessive HR dropping on increased CV event risk remained in the subgroups of older age, New York Heart Association class IV, ischaemic HF, higher left ventricular ejection fraction, absence of chronic kidney disease, and use of beta-blockers or ivabradine. Independent determinants associated with excessive HR dropping during admission included use of beta-blockers [odds ratio (OR) 1.683, 95% CI 1.558-1.819], lower discharge diastolic blood pressure (OR 0.988, 95% CI 0.985-0.991), no pacemaker (OR 0.501, 95% CI 0.416-0.603), coexisting atrial fibrillation or atrial flutter (OR 1.327, 95% CI 1.218-1.445), and use of digoxin (OR 1.340, 95% CI 1.213-1.480). CONCLUSIONS: In hospitalized HFpEF patients, excessive HR dropping during hospitalization is associated with an increased risk of CV death or HF rehospitalization. These findings highlight the importance of HR monitoring and avoiding excessively slowing down HR in hospitalized HFpEF patients to reduce the risk of CV events.

12.
Theranostics ; 14(5): 1886-1908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505621

RESUMO

Rationale: Lymphangiogenesis plays a critical role in the transplanted heart. The remodeling of lymphatics in the transplanted heart and the source of newly formed lymphatic vessels are still controversial, especially the mechanism of lymphangiogenesis remains limited. Methods: Heart transplantation was performed among BALB/c, C57BL/6J, Cag-Cre, Lyve1-CreERT2;Rosa26-tdTomato and Postn(2A-CreERT2-wpre-pA)1;Rosa26-DTA mice. scRNA-seq, Elisa assay, Western blotting, Q-PCR and immunohistochemical staining were used to identify the cells and cell-cell communications of allograft heart. Cell depletion was applied to in vivo and in vitro experiments. Whole-mount staining and three-dimensional reconstruction depicted the cell distribution within transparent transplanted heart. Results: Genetic lineage tracing mice and scRNA-seq analysis have revealed that these newly formed lymphatic vessels mainly originate from recipient LYVE1+ cells. It was found that LECs primarily interact with activated fibroblasts. Inhibition of lymphatic vessel formation using a VEGFR3 inhibitor resulted in a decreased survival time of transplanted hearts. Furthermore, when activated fibroblasts were ablated in transplanted hearts, there was a significant suppression of lymphatic vessel generation, leading to earlier graft failure. Additional investigations have shown that activated fibroblasts promote tube formation of LECs primarily through the activation of various signaling pathways, including VEGFD/VEGFR3, MDK/NCL, and SEMA3C/NRP2. Interestingly, knockdown of VEGFD and MDK in activated fibroblasts impaired cardiac lymphangiogenesis after heart transplantation. Conclusions: Our study indicates that cardiac lymphangiogenesis primarily originates from recipient cells, and activated fibroblasts play a crucial role in facilitating the generation of lymphatic vessels after heart transplantation. These findings provide valuable insights into potential therapeutic targets for enhancing graft survival.


Assuntos
Linfangiogênese , Vasos Linfáticos , Proteína Vermelha Fluorescente , Camundongos , Animais , Camundongos Endogâmicos C57BL , Coração
13.
Heliyon ; 10(3): e24662, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317888

RESUMO

Vaccination is the most cost-effective method for preventing various infectious diseases. Compared with conventional vaccines, new-generation vaccines, especially recombinant protein or synthetic peptide vaccines, are safer but less immunogenic than crude inactivated microbial vaccines. The immunogenicity of these vaccines can be enhanced using suitable adjuvants. This is the main reason why adjuvants are of great importance in vaccine development. Several novel human emulsion-based vaccine adjuvants (MF59, AS03) have been approved for clinical use. This paper reviews the research progress on emulsion-based adjuvants and focuses on their mechanism of action. An outlook can be provided for the development of emulsion-based vaccine adjuvants.

14.
Front Comput Neurosci ; 18: 1263311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390007

RESUMO

Objective: Here, we demonstrate the first successful use of static neural stimulation patterns for specific information content. These static patterns were derived by a model that was applied to a subject's own hippocampal spatiotemporal neural codes for memory. Approach: We constructed a new model of processes by which the hippocampus encodes specific memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of targeted content into short-term memory. A memory decoding model (MDM) of hippocampal CA3 and CA1 neural firing was computed which derives a stimulation pattern for CA1 and CA3 neurons to be applied during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results: MDM electrical stimulation delivered to the CA1 and CA3 locations in the hippocampus during the sample phase of DMS trials facilitated memory of images from the DMS task during a delayed recognition (DR) task that also included control images that were not from the DMS task. Across all subjects, the stimulated trials exhibited significant changes in performance in 22.4% of patient and category combinations. Changes in performance were a combination of both increased memory performance and decreased memory performance, with increases in performance occurring at almost 2 to 1 relative to decreases in performance. Across patients with impaired memory that received bilateral stimulation, significant changes in over 37.9% of patient and category combinations was seen with the changes in memory performance show a ratio of increased to decreased performance of over 4 to 1. Modification of memory performance was dependent on whether memory function was intact or impaired, and if stimulation was applied bilaterally or unilaterally, with nearly all increase in performance seen in subjects with impaired memory receiving bilateral stimulation. Significance: These results demonstrate that memory encoding in patients with impaired memory function can be facilitated for specific memory content, which offers a stimulation method for a future implantable neural prosthetic to improve human memory.

15.
Chemosphere ; 352: 141515, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387659

RESUMO

Anaerobically digested swine wastewater (ASW) purification by microalgae provides a promising strategy for nutrients recovery, biomass production and CO2 capture. However, the characteristics of ASW from different cleaning processes vary greatly. At present, the cultivation of microalgae in ASW from different manure cleaning processes is rarely investigated and compared. That may bring uncertainty for microalgae growth using different ASW in large-scale application. Thus, the ASW from three cleaning processes were tested for cultivating microalgae, including manure dry collection (I), water flushing (II) and water submerging processes (III). The characteristics of ASW from three manure cleaning processes varied greatly such as nutrient and heavy metals levels. High concentration of ammonia and copper in ASW significantly inhibited microalgae growth. Fortunately, the supply of high CO2 (10%) effectively alleviated negative influences, ensuring microalgal growth at low dilution ratio. The characteristics of three ASW resulted in significant differences in microalgae growth and biomass components. The maximal biomass production in optimal diluted ASW-I, II and III reached 1.46 g L-1, 2.19 g L-1 and 2.47 g L-1, respectively. The removal of organic compounds, ammonia and phosphorus by optimal microalgae growth in diluted ASW-I, II and III was 50.6%/94.2%/64.7%, 63.7%/82.3%/57.6% and 83.2%/91.7%/59.7%, respectively. The culture in diluted ASW-I, II and III obtained the highest lipids production of 12.1 mg L-1·d-1, 16.5 mg L-1·d-1 and 19.4 mg L-1·d-1, respectively. The analysis of lipids compositions revealed that the proportion of saturated fatty acids accounted for 36.4%, 32.4% and 27.9 % in optimal diluted ASW-I, II and III, as ideal raw materials for biodiesel production.


Assuntos
Clorofíceas , Poluentes Ambientais , Microalgas , Scenedesmus , Animais , Suínos , Águas Residuárias , Biomassa , Esterco , Amônia , Dióxido de Carbono , Nitrogênio , Ácidos Graxos , Biocombustíveis , Água
16.
Science ; 383(6682): eadj9198, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38300992

RESUMO

Mapping single-neuron projections is essential for understanding brain-wide connectivity and diverse functions of the hippocampus (HIP). Here, we reconstructed 10,100 single-neuron projectomes of mouse HIP and classified 43 projectome subtypes with distinct projection patterns. The number of projection targets and axon-tip distribution depended on the soma location along HIP longitudinal and transverse axes. Many projectome subtypes were enriched in specific HIP subdomains defined by spatial transcriptomic profiles. Furthermore, we delineated comprehensive wiring diagrams for HIP neurons projecting exclusively within the HIP formation (HPF) and for those projecting to both intra- and extra-HPF targets. Bihemispheric projecting neurons generally projected to one pair of homologous targets with ipsilateral preference. These organization principles of single-neuron projectomes provide a structural basis for understanding the function of HIP neurons.


Assuntos
Axônios , Mapeamento Encefálico , Hipocampo , Neurônios , Animais , Camundongos , Axônios/fisiologia , Axônios/ultraestrutura , Hipocampo/ultraestrutura , Neurônios/classificação , Neurônios/ultraestrutura , Análise de Célula Única/métodos , Rede Nervosa , Masculino , Camundongos Endogâmicos C57BL
17.
Water Res X ; 22: 100213, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38414757

RESUMO

High-solid anaerobic digestion (HSAD) reject water, distinguished by elevated levels of chemical oxygen demand (COD), NH4+-N and an imbalanced COD/TIN, presents a significant challenge for treatment through conventional partial nitritation/ anammox (PN/A) process. This study introduced a revised two-stage PN/A process, namely partial nitritation/denitritation-anammox (PN-DN/A) process. Its effectiveness was investigated through both pilot-scale (12 t/d) and full-scale (400 t/d) operations, showcasing stable operation with an impressive total removal rate of over 90 % for total inorganic nitrogen (TIN) and exceeding 60 % for COD. Notably, 30 % of TIN was eliminated through heterotrophic denitritation in partial nitritation-denitritation (PN-DN) stage, while approximately 55 % of TIN removal occurred in the anammox stage with anaerobic ammonium oxidizing bacteria (AnAOB) enrichment (Candidatus Kuenenia, 25.9 % and 26.6 % relative abundance for pilot and full scale). In the PN-DN stage, aerobic-anaerobic alternation promoted organics elimination (around 50 % COD) and balanced nitrogen species. Microbial and metagenomic analysis verified the coupling between autotrophic and heterotrophic denitritation and demonstrated that PN-DN stage acted as a protective buffer for anammox stage. This comprehensive study highlights the PN-DN/A process's efficacy in stably treating HSAD reject water.

18.
Environ Toxicol ; 39(5): 2732-2740, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251951

RESUMO

BACKGROUND: Cervical cancer, a life-threatening disease, is the seventh most commonly detected cancer among women throughout the world. The present study investigated the effect of tretinoin on cervical cancer growth and metastasis in vitro and in vivo in the mice model. MATERIALS AND METHODS: Cell Counting Kit-8, clonogenic survival, and transwell chamber assays were used for determination cells proliferation, colony formation, and invasiveness. Western blotting assay was used for assessment of protein expression whereas AutoDock Vina and Discovery studio software for in silico studies. RESULTS: Tretinoin treatment significantly (p < .05) reduced the proliferation of HT-3 and Caski cells in concentration-based manner. Incubation with tretinoin caused a significant decrease in clonogenic survival of HT-3 and Caski cells compared with the control cultures. The invasive potential of HT-3 cells was decreased to 18%, whereas that of Caski cells to 21% on treatment with 8 µM concentration of tretinoin. In HT-3 cells, tretinoin treatment led to a prominent reduction in p-focal adhesion kinase (FAK), matrix metalloproteinases (MMP)-2, and MMP-9 expression in HT-3 cells. Treatment of the cervical cancer mice model with tretinoin led to a prominent decrease in tumor growth. The metastasis of tumor in model cervical cancer mice group was effectively inhibited in spleen, intestines, and peritoneal cavity. In silico studies showed that tretinoin interacts with alanine, proline, isoleucine, and glycine amino acid residues of FAK protein to block its activation. The 2-dimensional diagram of interaction of tretinoin with FAK protein revealed that tretinoin binds to alanine and glycine amino acids through conventional hydrogen bonding. CONCLUSION: In summary, tretinoin suppressed the proliferation, colony formation, and invasiveness of cervical cancer cells in vitro. It decreased the expression of activated focal adhesion kinase, MMP-2, and MMP-9 in HT-3 cells in dose-dependent manner. In silico studies showed that tretinoin interacts with alanine and glycine amino acids through conventional hydrogen bonding. In vivo data demonstrated that treatment of the cervical cancer mice model with tretinoin led to a prominent decrease in tumor growth. Therefore, tretinoin can be developed as an effective therapeutic agent for cervical cancer treatment.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Animais , Camundongos , Neoplasias do Colo do Útero/metabolismo , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Linhagem Celular Tumoral , Regulação para Baixo , Metaloproteinase 9 da Matriz/metabolismo , Proliferação de Células , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Alanina/metabolismo , Alanina/farmacologia , Alanina/uso terapêutico , Glicina/metabolismo , Glicina/farmacologia , Glicina/uso terapêutico , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Aminoácidos/uso terapêutico , Invasividade Neoplásica , Movimento Celular
19.
Cell Mol Life Sci ; 81(1): 39, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214751

RESUMO

Colorectal cancer (CRC) is characterized by a complex tumor inflammatory microenvironment, while angiogenesis and immunosuppression frequently occur concomitantly. However, the exact mechanism that controls angiogenesis and immunosuppression in CRC microenvironment remains unclear. Herein, we found that expression levels of lipid raft protein STOML2 were increased in CRC and were associated with advanced disease stage and poor survival outcomes. Intriguingly, we revealed that STOML2 is essential for CRC tumor inflammatory microenvironment, which induces angiogenesis and facilitates tumor immune escape simultaneously both in vitro and in vivo. Moreover, tumors with STOML2 overexpression showed effective response to anti-angiogenesis treatment and immunotherapy in vivo. Mechanistically, STOML2 regulates CRC proliferation, angiogenesis, and immune escape through activated NF-κB signaling pathway via binding to TRADD protein, resulting in upregulation of CCND1, VEGF, and PD-L1. Furthermore, treatment with NF-κB inhibitor dramatically reversed the ability of proliferation and angiogenesis. Clinically, we also observed a strong positive correlation between STOML2 expression and Ki67, CD31, VEGFC and PD-1 of CD8+T cell expression. Taken together, our results provided novel insights into the role of STOML2 in CRC inflammatory microenvironment, which may present a therapeutic opportunity for CRC.


Assuntos
Neoplasias Colorretais , Proteínas de Membrana , NF-kappa B , Microambiente Tumoral , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Regulação para Cima , Microdomínios da Membrana , Proteínas de Membrana/genética
20.
Expert Opin Drug Saf ; : 1-7, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288971

RESUMO

BACKGROUND: Hepatic cancer is a common cancer in clinical practice. Current drug therapies for this condition include targeted therapy, chemotherapy, and immunotherapy. Tumor lysis syndrome (TLS) is the most serious complication of oncology treatment. According to the literature, several cases reported TLS occurred with targeted therapies for hepatic cancer. METHODS: Reporting odds ratio and information component were used to measure the disproportionate signals for TLS associated with targeted therapies, using data from the FDA's Adverse Event Reporting System (FAERS). A stepwise sensitivity analysis was conducted to test the robustness of signals. Time-to-onset analysis was used to describe the latency of TLS events associated with targeted therapies. The Bradford Hill criteria were used to perform a global assessment of the evidence. RESULTS: Sorafenib, lenvatinib, cabozantinib, and bevacizumab showed higher disproportionate signals for TLS than chemotherapy. The median number of days to TLS occurrence after drug therapy was 5.5, 6.5, and 6.5 days for sorafenib, lenvatinib, and bevacizumab, respectively. CONCLUSIONS: There is a significant association between tumor lysis syndrome and targeted therapies for hepatic carcinoma, with particularly strong signals for sorafenib and lenvatinib. Clinicians should be aware of the potential for tumor lysis syndrome in targeted therapies for hepatic carcinoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA