Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-35607520

RESUMO

Objective: Buddlejae Flos has a long history of utilization by humans to treat ophthalmic diseases. Although in vitro study revealed that it can be used for treating cataract, the bioactive components and the mechanism of efficacy remained unclear. This study aims to discover the bioactive components and mode of efficacy of Buddlejae Flos in cataract treatment. Methods: Several databases were screened for bioactive components and corresponding targets, as well as cataract-related targets. Using the String database, common targets were determined and utilized to construct protein-protein interactions (PPI). The drug-component-target-disease network map was drawn using Cytoscape software. R language was utilized to execute Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analysis. Molecular docking was done through Schrödinger Maestro software utilization. Luteolin's (LUT) effect on cataract induced by sodium selenite in rat pups was evaluated. Results: Six bioactive components with 38 common targets were identified as being associated with cataract. TP53, AKT1, EGFR, CASP3, TNF, ESR1, INS, IL6, HIF1A, and VEGFA were identified as core targets in PPI analysis, and the binding energy of LUT with AKT was the lowest. LUT has been demonstrated to significantly lower MDA levels, raise glutathione (GSH) levels, and boost the activity of antioxidant enzymes like GST, SOD, GPx, and CAT. After LUT treatment, TNF-a, IL-2, and IL-6 levels were significantly lowered. Bcl-2 mRNA expression levels and p-PI3K and p-AKT protein expression were significantly elevated. In contrast, caspase-3 and Bax mRNA expression levels were significantly decreased. Conclusion: This study demonstrates that LUT is a possible bioactive component that may be utilized for cataract treatment. Its mode of action includes oxidative stress suppression, reducing inflammation, and inhibiting apoptosis via regulating the PI3K/AKT single pathway.

2.
J Clin Invest ; 131(4)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586674

RESUMO

Abnormal angiogenesis and regression of the diseased retinal vasculature are key processes associated with ischemic retinopathies, but the underlying mechanisms that regulate vascular remodeling remain poorly understood. Here, we confirmed the specific expression of semaphorin 3G (Sema3G) in retinal endothelial cells (ECs), which was required for vascular remodeling and the amelioration of ischemic retinopathy. We found that Sema3G was elevated in the vitreous fluid of patients with proliferative diabetic retinopathy (PDR) and in the neovascularization regression phase of oxygen-induced retinopathy (OIR). Endothelial-specific Sema3G knockout mice exhibited decreased vessel density and excessive matrix deposition in the retinal vasculature. Moreover, loss of Sema3G aggravated pathological angiogenesis in mice with OIR. Mechanistically, we demonstrated that HIF-2α directly regulated Sema3G transcription in ECs under hypoxia. Sema3G coordinated the functional interaction between ß-catenin and VE-cadherin by increasing ß-catenin stability in the endothelium through the neuropilin-2 (Nrp2)/PlexinD1 receptor. Furthermore, Sema3G supplementation enhanced healthy vascular network formation and promoted diseased vasculature regression during blood vessel remodeling. Overall, we deciphered the endothelium-derived Sema3G-dependent events involved in modulating physiological vascular remodeling and regression of pathological blood vessels for reparative vascular regeneration. Our findings shed light on the protective effect of Sema3G in ischemic retinopathies.


Assuntos
Endotélio Vascular/metabolismo , Isquemia/metabolismo , Doenças Retinianas/metabolismo , Vasos Retinianos/metabolismo , Semaforinas/metabolismo , Remodelação Vascular , beta Catenina/metabolismo , Animais , Endotélio Vascular/patologia , Feminino , Humanos , Isquemia/genética , Isquemia/patologia , Masculino , Camundongos , Camundongos Transgênicos , Doenças Retinianas/genética , Doenças Retinianas/patologia , Vasos Retinianos/patologia , Semaforinas/genética , beta Catenina/genética
3.
Theranostics ; 10(24): 10993-11012, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042266

RESUMO

CRISPR/Cas-based mRNA imaging has been developed to labeling of high-abundance mRNAs. A lack of non-genetically encoded mRNA-tagged imaging tools has limited our ability to explore the functional distributions of endogenous low-abundance mRNAs in cells. Here, we developed a CRISPR-Sunspot method based on the SunTag signal amplification system that allows efficient imaging of low-abundance mRNAs with CRISPR/Cas9. Methods: We created a stable TRE3G-dCas9-EGFP cell line and generated an Inducible dCas9-EGFP imaging system for assessment of two factors, sgRNA and dCas9, which influence imaging quality. Based on SunTag system, we established a CRISPR-Sunspot imaging system for amplifying signals from single-molecule mRNA in live cells. CRISPR-Sunspot was used to track co-localization of Camk2a mRNA with regulatory protein Xlr3b in neurons. CRISPR-Sunspot combined with CRISPRa was used to determine elevated mRNA molecules. Results: Our results showed that manipulating the expression of fluorescent proteins and sgRNA increased the efficiency of RNA imaging in cells. CRISPR-Sunspot could target endogenous mRNAs in the cytoplasm and amplified signals from single-molecule mRNA. Furthermore, CRISPR-Sunspot was also applied to visualize mRNA distributions with its regulating proteins in neurons. CRISPR-Sunspot detected the co-localization of Camk2a mRNA with overexpressed Xlr3b proteins in the neuronal dendrites. Moreover, we also manipulated CRISPR-Sunspot to detect transcriptional activation of target gene such as HBG1 in live cells. Conclusion: Our findings suggest that CRISPR-Sunspot is a novel applicable imaging tool for visualizing the distributions of low-abundance mRNAs in cells. This study provides a novel strategy to unravel the molecular mechanisms of diseases caused by aberrant mRNA molecules.


Assuntos
Sistemas CRISPR-Cas/genética , Microscopia Intravital/métodos , Imagem Molecular/métodos , RNA Mensageiro/metabolismo , Imagem Individual de Molécula/métodos , Animais , Linhagem Celular Tumoral , Embrião de Mamíferos , Feminino , Hemoglobina Fetal/genética , Células HEK293 , Humanos , Microscopia Confocal/métodos , Neurônios , Cultura Primária de Células , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética , Ratos , Ativação Transcricional , Transfecção
4.
J Am Chem Soc ; 141(49): 19487-19497, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31735023

RESUMO

Carbon dioxide (CO2) and sulfides in gasoline are the main causes of air pollution. Considerable attention has been devoted to solving the problems, and the catalytic reaction seems to be a good choice. Owing to the high density of Lewis acid (LA) active sites and large numbers of open methoxide groups, polyoxovanadates (POVs) are an undisputed option as a heterogeneous catalyst for the CO2 cycloaddition reaction and catalytic oxidation of sulfides. On the basis of the above, a series of V8 clusters, [(C2N2H8)4(CH3O)8VIV8O12]·CH3OH (V8-1a), [(C2N2H8)4(CH3O)4VIV4VV4O16]·4CH3OH (V8-1), [(C3N2H10)4(CH3O)4VIV4VV4O16]·5H2O (V8-2), [(C6N2H14)4(CH3O)4VIV4VV4O16]·5CH3OH·2H2O (V8-3), have been legitimately designed and triumphantly isolated. In the synthesis process, three different kinds of Lewis bases (LBs), ethanediamine, 1,2-diaminopropane, and 1,2-cyclohexanediamine, were used to modify LA {V8} clusters to form four diverting windmill-shaped configuration. Among them, the vanadium atoms in V8-1a are +4 valence of VIV, while the vanadium atoms in V8-1-3 are mixed valence states of VIV and VV. Magnetic property investigation indicates that the antiferromagnetic coupling interactions between VIV ions all exist in the four compounds. The compound V8-1 also demonstrated high catalytic activity in the cycloaddition of CO2 to several epoxides under relatively mild conditions (70 °C, 0.5 MPa). More importantly, the reaction pressure 0.5 MPa is the lowest among the high nuclear polyoxometallates (POMs). Furthermore, V8-1 also has an excellent catalytic conversion for the oxidation of sulfides. The catalytic tests manifested that V8-1 was a very efficient difunctional heterogeneous catalyst for CO2 cycloaddition reaction and catalytic oxidation of sulfides.

5.
Physiol Plant ; 153(4): 565-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25143057

RESUMO

In plants, the role of anthocyanins trafficking in response to high temperature has been rarely studied, and therefore poorly understood. Red-fleshed kiwifruit has stimulated the world kiwifruit industry owing to its appealing color. However, fruit in warmer climates have been found to have poor flesh coloration, and the factors responsible for this response remain elusive. Partial correlation and regression analysis confirmed that accumulative temperatures above 25 °C (T25) was one of the dominant factors inhibiting anthocyanin accumulation in red-fleshed Actinidia chinensis, 'Hongyang'. Expression of structural genes, AcMRP and AcMYB1 in inner pericarp sampled from the two high altitudes (low temperature area), was notably higher than the low altitude (high temperature area) during fruit coloration. AcMYB1 and structural genes coordinate expression supported the MYB-bHLH (basic helix-loop-helix)-WD40 regulatory complex mediated downregulation of anthocyanin biosynthesis induced by high temperatures in kiwifruit. Moreover, cytological observations using the light and transmission electronic microscopy showed that there were a series of anthocyanic vacuolar inclusion (AVI)-like structures involved in their vacuolization process and dissolution of the pigmented bodies inside cells of fruit inner pericarp. Anthocyanin transport was inhibited by high temperature via retardation of vacuolization or reduction in AIV-like structure formation. Our findings strongly suggested that complex multimechanisms influenced the effects of high temperature on red-fleshed kiwifruit coloration.


Assuntos
Actinidia/metabolismo , Antocianinas/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Actinidia/citologia , Actinidia/genética , Actinidia/efeitos da radiação , Sequência de Bases , Transporte Biológico , Frutas/citologia , Frutas/genética , Frutas/efeitos da radiação , Luz , Dados de Sequência Molecular , Filogenia , Pigmentação , Análise de Sequência de DNA , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA