Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(37): e2301386, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37086119

RESUMO

Perovskite-based photodetectors exhibit potential applications in communication, neuromorphic chips, and biomedical imaging due to their outstanding photoelectric properties and facile manufacturability. However, few of perovskite-based photodetectors focus on ultraviolet-visible-short-wavelength infrared (UV-Vis-SWIR) broadband photodetection because of the relatively large bandgap. Moreover, such broadband photodetectors with individual nanocrystal channel featuring monolithic integration with functional electronic/optical components have hardly been explored. Herein, an individual monocrystalline MAPbBr3 nanoplate-based photodetector is demonstrated that simultaneously achieves efficient UV-Vis-SWIR detection and fast-response. Nanoplate photodetectors (NPDs) are prepared by assembling single nanoplate on adjacent gold electrodes. NPDs exhibit high external quantum efficiency (EQE) and detectivity of 1200% and 5.37 × 1012 Jones, as well as fast response with rise time of 80 µs. Notably, NPDs simultaneously achieve high EQE and fast response, exceeding most perovskite devices with multi-nanocrystal channel. Benefiting from the high specific surface area of nanoplate with surface-trap-assisted absorption, NPDs achieve high performance in the near-infrared and SWIR spectral region of 850-1450 nm. Unencapsulated devices show outstanding UV-laser-irradiation endurance and decent periodicity and repeatability after 29-day-storage in atmospheric environment. Finally, imaging applications are demonstrated. This work verifies the potential of perovskite-based broadband photodetection, and stimulates the monolithic integration of various perovskite-based devices.

2.
Small ; 18(14): e2105383, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35048521

RESUMO

2D materials are now at the forefront of state-of-the-art nanotechnologies due to their fascinating properties and unique structures. As expected, low-cost, high-volume, and high-quality 2D materials play an important role in the applications of flexible devices. Although considerable progress has been achieved in the integration of a series of novel 2D materials beyond graphene into flexible devices, a lot remains to be known. At this stage of their development, the key issues concern how to make further improvements to high-performance and scalable-production. Herein, recent progress in the quest to improve the current state of the art for 2D materials beyond graphene is reviewed. Namely, the properties and synthesis techniques of 2D materials are first introduced. Then, both the advantages and challenges of these 2D materials for flexible devices are also highlighted. Finally, important directions for future advancements toward efficient, low-cost, and stable flexible devices are outlined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA