Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
1.
Nano Lett ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297439

RESUMO

High emission rate, high collection efficiency, and immunity to defects are the requirements of implementing on-chip single photon sources. Here, we theoretically demonstrate that both cascade enhancement and high collection efficiency of emitted photons from a single emitter can be achieved simultaneously in a topological photonic crystal containing a resonant dielectric nanodisk. The nanodisk excited by a magnetic emitter can be regarded as a large equivalent magnetic dipole. The near-field overlapping between this equivalent magnetic dipole and edge state enables achieving a cascade enhancement of single-photon emission with a Purcell factor exceeding 4 × 103. These emitted photons are guided into edge states with a collection efficiency of more than 90%, which is also corresponding to quantum yield due to topological antiscattering and the absence of absorption. The proposed mechanism under topological protection has potential applications in on-chip light-matter interactions, quantum light sources, and nanolasers.

2.
Light Sci Appl ; 13(1): 275, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39327415

RESUMO

The on-chip measurement of polarization states plays an increasingly crucial role in modern sensing and imaging applications. While high-performance monolithic linearly polarized photodetectors have been extensively studied, integrated circularly polarized light (CPL) photodetectors are still hindered by inadequate discrimination capability. This study presents a broadband CPL photodetector utilizing achiral all-dielectric nanostructures, achieving an impressive discrimination ratio of ~107 at a wavelength of 405 nm. Our device shows outstanding CPL discrimination capability across the visible band without requiring intensity calibration. It functions based on the CPL-dependent near-field modes within achiral structures: under left or right CPL illumination, distinct near-field modes are excited, resulting in asymmetric irradiation of the two electrodes and generating a photovoltage with directions determined by the chirality of the incident light field. The proposed design strategy facilitates ultra-compact CPL detection across diverse materials, structures, and spectral ranges, presenting a novel avenue for achieving high-performance monolithic CPL detection.

3.
J Phys Chem Lett ; 15(31): 8101-8107, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39087866

RESUMO

High-order harmonic generation (HHG) in condensed matter is highly important for potential applications in various fields, such as materials characterization, all-optical switches, and coherent light source generation. Linking HHG to the properties or dynamic processes of materials is essential for realizing these applications. Here, a bridge has been built between HHG and the transient properties of materials through the engineering of interband polarization in a photoexcited three-dimensional Dirac semimetal (3D-DSM). It has been found that HHG can be efficiently manipulated by the electronic relaxation dynamics of 3D-DSM on an ultrafast time scale of several hundred femtoseconds. Furthermore, time-resolved HHG (tr-HHG) has been demonstrated to be a powerful spectroscopy method for tracking electron relaxation dynamics, enabling the identification of electron thermalization and electron-phonon coupling processes and the quantitative extraction of electron-phonon coupling strength. This demonstration provides insights into the active control of HHG and measurements of the electron dynamics.

4.
Chem Rev ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207782

RESUMO

Recently, there has been an extensive focus on inverted perovskite solar cells (PSCs) with a p-i-n architecture due to their attractive advantages, such as exceptional stability, high efficiency, low cost, low-temperature processing, and compatibility with tandem architectures, leading to a surge in their development. Single-junction and perovskite-silicon tandem solar cells (TSCs) with an inverted architecture have achieved certified PCEs of 26.15% and 33.9% respectively, showing great promise for commercial applications. To expedite real-world applications, it is crucial to investigate the key challenges for further performance enhancement. We first introduce representative methods, such as composition engineering, additive engineering, solvent engineering, processing engineering, innovation of charge transporting layers, and interface engineering, for fabricating high-efficiency and stable inverted PSCs. We then delve into the reasons behind the excellent stability of inverted PSCs. Subsequently, we review recent advances in TSCs with inverted PSCs, including perovskite-Si TSCs, all-perovskite TSCs, and perovskite-organic TSCs. To achieve final commercial deployment, we present efforts related to scaling up, harvesting indoor light, economic assessment, and reducing environmental impacts. Lastly, we discuss the potential and challenges of inverted PSCs in the future.

5.
Phys Rev Lett ; 133(7): 073801, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39213581

RESUMO

Quantum-limited timing jitter of soliton microcombs has long been recognized as their fundamental noise limit. Here, we surpass such limit by utilizing dispersive wave dynamics in multimode microresonators. Through the viscous force provided by these dispersive waves, the quantum-limited timing jitter can be suppressed to a much lower level that forms the ultimate fundamental noise limit of soliton microcombs. Our findings enable coherence engineering of soliton microcombs in the quantum regime, providing critical guidelines for using soliton microcombs to synthesize ultralow-noise microwave and optical signals.

6.
Angew Chem Int Ed Engl ; : e202412590, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180505

RESUMO

As the initial synthesized colloidal quantum dots (CQDs) are generally capped with insulating ligands, ligand exchange strategies are essential in the fabrication of CQD films for solar cells, which can regulate the surface chemical states of CQDs to make them more suitable for thin-film optoelectronic devices. However, uncontrollable surface adsorption of water molecules during the ligand exchange process introduces new defect sites, thereby impairing the resultant device performance, which attracts more efforts devoted to it but remains a puzzle. Here, we develop a solvent-engineering-assisted ligand exchange strategy to revamp the surface adsorption, improve the exchange efficiency, and modulate the surface chemistry for the environmentally friendly lead-free silver bismuth disulfide (AgBiS2) CQDs. The optimized AgBiS2 CQD solar cells deliver an outstanding champion power conversion efficiency (PCE) of up to 8.95% and improved long-term stability. Our strategy is less environment-dependent and can produce solar cells with negligible performance variance for several batches across several months. Our work demonstrates the critical role of solvents for ligand exchange in the surface chemistry of CQDs and the realization of high-performance photovoltaic devices in a highly reproducible manner.

7.
Nano Lett ; 24(34): 10418-10425, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39158928

RESUMO

Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS2 QDs, focus on the control of interdot spacing, and substitute the long-chain ligands with ammonium iodide in solution. This results in improved electronic coupling of AgBiS2 QDs with excellent surface passivation, which greatly facilitates carrier transport within the QD films. Based on the stable AgBiS2 QD dispersion with the optimal ligand state, a homogeneous and densely packed QD film is prepared by a facile one-step coating process, delivering a champion power conversion efficiency of approximately 8% in the QD solar cells with outstanding shelf life stability. The proposed surface engineering strategy holds the potential to become a universal preprocessing step in the realm of high-performance QD optoelectronic devices.

8.
Science ; 385(6705): 161-167, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38991067

RESUMO

Black-phase formamidinium lead iodide (α-FAPbI3) perovskites are the desired phase for photovoltaic applications, but water can trigger formation of photoinactive impurity phases such as δ-FAPbI3. We show that the classic solvent system for perovskite fabrication exacerbates this reproducibility challenge. The conventional coordinative solvent dimethyl sulfoxide (DMSO) promoted δ-FAPbI3 formation under high relative humidity (RH) conditions because of its hygroscopic nature. We introduced chlorine-containing organic molecules to form a capping layer that blocked moisture penetration while preserving DMSO-based complexes to regulate crystal growth. We report power conversion efficiencies of >24.5% for perovskite solar cells fabricated across an RH range of 20 to 60%, and 23.4% at 80% RH. The unencapsulated device retained 96% of its initial performance in air (with 40 to 60% RH) after 500-hour maximum power point operation.

9.
Phys Rev Lett ; 132(24): 243802, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38949371

RESUMO

Orbital angular momentum (OAM) provides an additional degree of freedom for optical communication systems, and manipulating on-chip OAM is important in integrated photonics. However, there is no effective method to realize OAM topological charge conversion on chip. In this Letter, we propose a way to convert OAM by encircling two groups of exceptional points in different Riemann sheets. In our framework, any OAM conversion can be achieved on demand just by manipulating adiabatic and nonadiabatic evolution of modes in two on-chip waveguides. More importantly, the chiral OAM conversion is realized, which is of great significance since the path direction can determine the final topological charge order. Our Letter presents a special chiral behavior and provides a new method to manipulate OAM on the chip.

10.
Phys Chem Chem Phys ; 26(36): 23528-23543, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39081061

RESUMO

High power femtosecond laser pulses launched in air undergo nonlinear filamentary propagation, featuring a bright and thin plasma channel in air with its length much longer than the Rayleigh length of the laser beam. During this nonlinear propagation process, the laser pulses experience rich and complex spatial and temporal transformations. With its applications ranging from supercontinuum generation, laser pulse compression, remote sensing to triggering of lightning, the underlying physical mechanism of filamentation has been intensively studied. In this review, we will focus on the fluorescence and cavity-free lasing effect of the plasma filaments in air. The different mechanisms underlying the fluorescence of the excited neutral nitrogen molecules will be throughly examined and it is concluded that the electron collision excitation is the dominant channel for the formation of the excited nitrogen molecules. The recently discovered "air lasing" effect, a cavity-free bidirectional lasing emission emitted by the filaments, will be introduced and its main properties will be emphasized. The applications of the fluorescence and lasing effect of the neutral nitrogen molecules will be introduced, with two examples on spectroscopy and detection of electric field. Finally, we discuss the quenching effect of the lasing effect in atmosphere and the mechanisms responsible will be analyzed. An outlook for the achievement of backward lasing in air will be briefly presented.

11.
Sci Adv ; 10(25): eadm7569, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38896615

RESUMO

Realizing a multifunctional integrated photonic platform is one of the goals for future optical information processing, which usually requires large size to realize due to multiple integration challenges. Here, we realize a multifunctional integrated photonic platform with ultracompact footprint based on inverse design. The photonic platform is compact with 86 inverse designed-fixed couplers and 91 phase shifters. The footprint of each coupler is 4 µm by 2 µm, while the whole photonic platform is 3 mm by 0.2 mm-one order of magnitude smaller than previous designs. One-dimensional Floquet Su-Schrieffer-Heeger model and Aubry-André-Harper model are performed with measured fidelities of 97.90 (±0.52) % and 99.34 (±0.44) %, respectively. We also demonstrate a handwritten digits classification task with the test accuracy of 87% using on-chip training. Moreover, the scalability of this platform has been proved by demonstrating more complex computing tasks. This work provides an effective method to realize an ultrasmall integrated photonic platform.

12.
Nat Mater ; 23(7): 928-936, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777873

RESUMO

Controlling topological phases of light allows the observation of abundant topological phenomena and the development of robust photonic devices. The prospect of more sophisticated control with topological photonic devices for practical implementations requires high-level programmability. Here we demonstrate a fully programmable topological photonic chip with large-scale integration of silicon photonic nanocircuits and microresonators. Photonic artificial atoms and their interactions in our compound system can be individually addressed and controlled, allowing the arbitrary adjustment of structural parameters and geometrical configurations for the observation of dynamic topological phase transitions and diverse photonic topological insulators. Individual programming of artificial atoms on the generic chip enables the comprehensive statistical characterization of topological robustness against relatively weak disorders, and counterintuitive topological Anderson phase transitions induced by strong disorders. This generic topological photonic chip can be rapidly reprogrammed to implement multifunctionalities, providing a flexible and versatile platform for applications across fundamental science and topological technologies.

13.
Sci Adv ; 10(20): eado1281, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748802

RESUMO

The twist engineering of moiré superlattice in van der Waals heterostructures of transition metal dichalcogenides can manipulate valley physics of interlayer excitons (IXs), paving the way for next-generation valleytronic devices. However, the twist angle-dependent control of excitonic potential on valley polarization is not investigated so far in electrically controlled heterostructures and the physical mechanism underneath needs to be explored. Here, we demonstrate the dependence of both polarization switching and degree of valley polarization on the moiré period. We also find the mechanisms to reveal the modulation of twist angle on the exciton potential and the electron-hole exchange interaction, which elucidate the experimentally observed twist angle-dependent valley polarization of IXs. Furthermore, we realize the valley-addressable devices based on polarization switch. Our work demonstrates the manipulation of the valley polarization of IXs by tunning twist angle in electrically controlled heterostructures, which opens an avenue for electrically controlling the valley degrees of freedom in twistronic devices.

14.
Nanoscale ; 16(19): 9317-9324, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38656387

RESUMO

For atomically thin two-dimensional materials, variations in layer thickness can result in significant changes in the electronic energy band structure and physicochemical properties, thereby influencing the carrier dynamics and device performance. In this work, we employ time- and energy-resolved photoemission electron microscopy to reveal the ultrafast carrier dynamics of PdSe2 with different layer thicknesses. We find that for few-layer PdSe2 with a semiconductor phase, an ultrafast hot carrier cooling on a timescale of approximately 0.3 ps and an ultrafast defect trapping on a timescale of approximately 1.3 ps are unveiled, followed by a slower decay of approximately tens of picoseconds. However, for bulk PdSe2 with a semimetal phase, only an ultrafast hot carrier cooling and a slower decay of approximately tens of picoseconds are observed, while the contribution of defect trapping is suppressed with the increase of layer number. Theoretical calculations of the electronic energy band structure further confirm the transition from a semiconductor to a semimetal. Our work demonstrates that TR- and ER-PEEM with ultrahigh spatiotemporal resolution and wide-field imaging capability has great advantages in revealing the intricate details of ultrafast carrier dynamics of nanomaterials.

15.
J Phys Chem Lett ; 15(14): 3805-3811, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38557052

RESUMO

Air lasing provides a promising technique to remotely produce coherent radiation in the atmosphere and has attracted continuous attention. However, the polarization properties of N2+ lasing with seeding have not been understood since it was discovered 10 years ago, in which the polarization behaviors appear disordered and confusing. Here, we performed an experimental and theoretical investigation of the polarization properties of N2+ lasing and successfully revealed its underlying physical mechanism. We found that the optical gain is anisotropic, owing to the permanent alignment of N2+ induced by the preferential ionization of the pump light. As a result, the polarization of the N2+ lasing tends to align with that of the pump light after amplification, which becomes more pronounced as the amplification factor increases. Based on the permanent alignment of N2+, we built a theoretical model that analytically interpreted and numerically reproduced the experimental observations, which points out the key factors for controlling the polarization of N2+ lasing.

16.
Front Optoelectron ; 17(1): 11, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679690

RESUMO

The topological photonics plays an important role in the fields of fundamental physics and photonic devices. The traditional method of designing topological system is based on the momentum space, which is not a direct and convenient way to grasp the topological properties, especially for the perturbative structures or coupled systems. Here, we propose an interdisciplinary approach to study the topological systems in real space through combining the information entropy and topological photonics. As a proof of concept, the Kagome model has been analyzed with information entropy. We reveal that the bandgap closing does not correspond to the topological edge state disappearing. This method can be used to identify the topological phase conveniently and directly, even the systems with perturbations or couplings. As a promotional validation, Su-Schrieffer-Heeger model and the valley-Hall photonic crystal have also been studied based on the information entropy method. This work provides a method to study topological photonic phase based on information theory, and brings inspiration to analyze the physical properties by taking advantage of interdisciplinarity.

17.
Nat Commun ; 15(1): 2601, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521765

RESUMO

Complex entangled states are the key resources for measurement-based quantum computations, which is realised by performing a sequence of measurements on initially entangled qubits. Executable quantum algorithms in the graph-state quantum computing model are determined by the entanglement structure and the connectivity of entangled qubits. By generalisation from graph-type entanglement in which only the nearest qubits interact to a new type of hypergraph entanglement in which any subset of qubits can be arbitrarily entangled via hyperedges, hypergraph states represent more general resource states that allow arbitrary quantum computation with Pauli universality. Here we report experimental preparation, certification and processing of complete categories of four-qubit hypergraph states under the principle of local unitary equivalence, on a fully reprogrammable silicon-photonic quantum chip. Genuine multipartite entanglement for hypergraph states is certificated by the characterisation of entanglement witness, and the observation of violations of Mermin inequalities without any closure of distance or detection loopholes. A basic measurement-based protocol and an efficient resource state verification by color-encoding stabilizers are implemented with local Pauli measurement to benchmark the building blocks for hypergraph-state quantum computation. Our work prototypes hypergraph entanglement as a general resource for quantum information processing.

18.
ACS Nano ; 18(11): 8157-8167, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456777

RESUMO

Perovskite light-emitting diodes (PeLEDs) are the next promising display technologies because of their high color purity and wide color gamut, while two classical emitter forms, i.e., polycrystalline domains and quantum dots, are encountering bottlenecks. Weak carrier confinement of large polycrystalline domains leads to inadequate radiative recombination, and surface ligands on quantum dots are the main annihilation sites for injected carriers. Here, pinpointing these issues, we screened out an amphoteric agent, namely, 2-(2-aminobenzoyl)benzoic acid (2-BA), to precisely control the in situ growth of FAPbI3 (FA: formamidine) nanodomains with enhanced space confinement, preferred crystal orientation, and passivated trap states on the transport-layer substrate. The amphoteric 2-BA performs bidentate chelating functions on the formation of ultrasmall perovskite colloids (<1 nm) in the precursor, resulting in a smoother FAPbI3 emitting layer. Based on monodispersed and homogeneous nanodomain films, a near-infrared PeLED device with a champion efficiency of >22% plus enhanced T80 operational stability was achieved. The proposed perovskite nanodomain film tends to be a mainstream emitter toward the performance breakthrough of PeLED devices covering visible wavelengths beyond infrared.

19.
Front Optoelectron ; 17(1): 7, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502409

RESUMO

Modulation of topological phase transition has been pursued by researchers in both condensed matter and optics research fields, and has been realized in Euclidean systems, such as topological photonic crystals, topological metamaterials, and coupled resonator arrays. However, the spin-controlled topological phase transition in non-Euclidean space has not yet been explored. Here, we propose a non-Euclidean configuration based on Möbius rings, and we demonstrate the spin-controlled transition between the topological edge state and the bulk state. The Möbius ring, which is designed to have an 8π period, has a square cross section at the twist beginning and the length/width evolves adiabatically along the loop, accompanied by conversion from transverse electric to transverse magnetic modes resulting from the spin-locked effect. The 8π period Möbius rings are used to construct Su-Schrieffer-Heeger configuration, and the configuration can support the topological edge states excited by circularly polarized light, and meanwhile a transition from the topological edge state to the bulk state can be realized by controlling circular polarization. In addition, the spin-controlled topological phase transition in non-Euclidean space is feasible for both Hermitian and non-Hermitian cases in 2D systems. This work provides a new degree of polarization to control topological photonic states based on the spin of Möbius rings and opens a way to tune the topological phase in non-Euclidean space.

20.
Adv Mater ; 36(21): e2313746, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332722

RESUMO

In organic light-emitting diode (OLED), achieving high efficiency requires effective triplet exciton confinement by carrier-transporting materials, which typically have higher triplet energy (ET) than the emitter, leading to poor stability. Here, an electron-transporting material (ETM), whose ET is 0.32 eV lower than that of the emitter is reported. In devices, it surprisingly exhibits strong confinement effect and generates excellent efficiency. Additionally, the device operational lifetime is 4.9 times longer than the device with a standard ETM, 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl) phenyl (whose ET 0.36 eV is higher than the emitter). This anomalous finding is ascribed to the exceptionally long triplet state lifetime (≈0.2 s) of the ETM. It is named as long-lifetime triplet exciton reservoir effect. The systematic analysis reveals that the long triplet lifetime of ETM can compensate the requirement for high ET with the help of endothermic energy transfer. Such combination of low ET and long lifetime provides equivalent exciton confinement effect and high molecular stability simultaneously. It offers a novel molecular design paradigm for breaking the dilemma between high efficiency and prolonged operational lifetime in OLEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA