Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(3): 033201, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307062

RESUMO

Recent advances in laser technology have enabled tremendous progress in light-induced molecular reactions, at the heart of which the breaking and formation of chemical bonds are located. Such progress has been greatly facilitated by the development of an accurate quantum-mechanical simulation method, which, however, does not necessarily accompany clear dynamical scenarios and is rather computationally heavy. Here, we develop a wave-packet surface propagation (WASP) approach to describe the molecular bond-breaking dynamics from a hybrid quantum-classical perspective. Via the introduction of quantum elements including state transitions and phase accumulations to the Newtonian propagation of the nuclear wave packet, the WASP approach naturally comes with intuitive physical scenarios and accuracies. It is carefully benchmarked with the H_{2}^{+} molecule and is shown to be capable of precisely reproducing experimental observations. The WASP method is promising for the intuitive visualization of light-induced molecular dynamics and is straightforward extensible towards complex molecules.

2.
J Phys Chem A ; 128(2): 401-412, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38181198

RESUMO

An ultrafast intense laser field is one of the most important tools to observe and manipulate electronic and nuclear dynamics with subcycle precision in highly nonlinear light-matter interactions, which provides access to attosecond chemistry and physics. In this review, we briefly summarize the protocol of attosecond chronoscopy and its application in probing the attosecond photoemission dynamics from atoms and molecules. We also review the control schemes of attosecond electron motion in atoms and molecules as well as molecular bond formation and cleavage with the assistance of tailored femtosecond laser fields.

3.
Light Sci Appl ; 13(1): 18, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228578

RESUMO

As compared to the intuitive process that the electron emits straight to the continuum from its parent ion, there is an alternative route that the electron may transfer to and be trapped by a neighboring ionic core before the eventual release. Here, we demonstrate that electron tunnelling via the neighboring atomic core is a pronounced process in light-induced tunnelling ionization of molecules by absorbing multiple near-infrared photons. We devised a site-resolved tunnelling experiment using an Ar-Kr+ ion as a prototype system to track the electron tunnelling dynamics from the Ar atom towards the neighboring Kr+ by monitoring its transverse momentum distribution, which is temporally captured into the resonant excited states of the Ar-Kr+ before its eventual releasing. The influence of the Coulomb potential of neighboring ionic cores promises new insights into the understanding and controlling of tunnelling dynamics in complex molecules or environment.

4.
Phys Rev Lett ; 131(20): 203201, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38039486

RESUMO

Multiphoton light-matter interactions invoke a so-called "black box" in which the experimental observations contain the quantum interference between multiple pathways. Here, we employ polarization-controlled attosecond photoelectron metrology with a partial wave manipulator to deduce the pathway interference within this quantum 'black box" for the two-photon ionization of neon atoms. The angle-dependent and attosecond time-resolved photoelectron spectra are measured across a broad energy range. Two-photon phase shifts for each partial wave are reconstructed through the comprehensive analysis of these photoelectron spectra. We resolve the quantum interference between the degenerate p→d→p and p→s→p two-photon ionization pathways, in agreement with our theoretical simulations. Our approach thus provides an attosecond time-resolved microscope to look inside the "black box" of pathway interference in ultrafast dynamics of atoms, molecules, and condensed matter.

5.
Opt Express ; 31(16): 25467-25476, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710432

RESUMO

Driven by intense laser fields, the outgoing photoelectrons in molecules possess a quiver motion, resulting in the rise of the effective ionization potential. The coupling of the field-dressed ionization potential with abundant molecular dynamics complicates the laser-molecule interactions. Here, we demonstrate an approach to resolve photoelectron releasing order in the dissociative and non-dissociative channels of multiphoton ionization driven by an orthogonally polarized two-color femtosecond laser pulse. The photoelectron kinetic energy releases and the regular nodes in the photoelectron angular distributions due to the participation of different continuum partial waves allow us to deduce the field-dressed ionization potential of various channels. It returns the ponderomotive energy experienced by the outgoing electron and reveals the corresponding photoionization instants within the laser pulse. Our results provide a route to explore the complex strong-field ionization dynamics of molecules using two-dimensional photoelectron momentum spectroscopy.

6.
Nat Commun ; 14(1): 4402, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479730

RESUMO

The interplay between electronic and nuclear motions in molecules is a central concept in molecular science. To what extent it influences attosecond photoionization delays is an important, still unresolved question. Here, we apply attosecond electron-ion coincidence spectroscopy and advanced calculations that include both electronic and nuclear motions to study the photoionization dynamics of CH4 and CD4 molecules. These molecules are known to feature some of the fastest nuclear dynamics following photoionization. Remarkably, we find no measurable delay between the photoionization of CH4 and CD4, neither experimentally nor theoretically. However, we measure and calculate delays of up to 20 as between the dissociative and non-dissociative photoionization of the highest-occupied molecular orbitals of both molecules. Experiment and theory are in quantitative agreement. These results show that, in the absence of resonances, even the fastest nuclear motion does not substantially influence photoionization delays, but identify a previously unknown signature of nuclear motion in dissociative-ionization channels. These findings have important consequences for the design and interpretation of attosecond chronoscopy in molecules, clusters, and liquids.

7.
Phys Rev Lett ; 130(3): 033201, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36763404

RESUMO

We investigate the above-threshold multiphoton ionization of H_{2} embedded in superfluid He nanodroplets driven by ultraviolet femtosecond laser pulses. We find that the surrounding He atoms enhance the dissociation of in-droplet H_{2}^{+} from lower vibrational states as compared to that of isolated gas-phase molecules. As a result, the discrete peaks in the photoelectron energy spectrum correlated with the HHe^{+} from the dissociative in-droplet molecule shift to higher energies. Based on the electron-nuclear correlation, the photoelectrons with higher energies are correlated to the nuclei of the low-vibrationally excited molecular ion as the nuclei share less photon energy. Our time-dependent nuclear wave packet quantum simulation using a simplified He-H_{2}^{+} system confirms the joint contribution of the driving laser field and the neighboring He atoms to the dissociation dynamics of the solute molecular ion. The results strengthen our understanding of the role of the environment on light-induced ultrafast dynamics of molecules.

8.
Phys Rev Lett ; 129(17): 173201, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36332237

RESUMO

Attosecond time-resolved electron tunneling dynamics have been investigated by using attosecond angular streaking spectroscopy, where a clock reference to the laser field vector is required in atomic strong-field ionization and the situation becomes complicated in molecules. Here we reveal a resonant ionization process via a transient state by developing an electron-tunneling-site-resolved molecular attoclock in Ar-Kr^{+}. Two distinct deflection angles are observed in the photoelectron angular distribution in the molecular frame, corresponding to the direct and resonant ionization pathways. We find the electron is temporally trapped in the Coulomb potential wells of the Ar-Kr^{+} before finally releasing into the continuum when the electron tunnels through the internal barrier. By utilizing the direct tunneling ionization as a self-referenced arm of the attoclock, the time delay of the electron trapped in the resonant state is revealed to be 3.50±0.04 fs. Our results give an impetus to exploring the ultrafast electron dynamics in complex systems and also endow a semiclassical presentation of the electron trapping dynamics in a quantum resonant state.

9.
Phys Rev Lett ; 129(13): 133002, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206434

RESUMO

We present the experimental observation of two-center interference in the ionization time delays of Kr_{2}. Using attosecond electron-ion-coincidence spectroscopy, we simultaneously measure the photoionization delays of krypton monomer and dimer. The relative time delay is found to oscillate as a function of the electron kinetic energy, an effect that is traced back to constructive and destructive interference of the photoelectron wave packets that are emitted or scattered from the two atomic centers. Our interpretation of the experimental results is supported by solving the time-independent Schrödinger equation of a 1D double-well potential, as well as coupled-channel multiconfigurational quantum-scattering calculations of Kr_{2}. This work opens the door to the study of a broad class of quantum-interference effects in photoionization delays and demonstrates the potential of attosecond coincidence spectroscopy for studying weakly bound systems.

10.
Nat Commun ; 13(1): 5072, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038537

RESUMO

Attosecond chronoscopy is central to the understanding of ultrafast electron dynamics in matter from gas to the condensed phase with attosecond temporal resolution. It has, however, not yet been possible to determine the timing of individual partial waves, and steering their contribution has been a substantial challenge. Here, we develop a polarization-skewed attosecond chronoscopy serving as a partial wave meter to reveal the role of each partial wave from the angle-resolved photoionization phase shifts in rare gas atoms. We steer the relative ratio between different partial waves and realize a magnetic-sublevel-resolved atomic phase shift measurement. Our experimental observations are well supported by time-dependent R-matrix numerical simulations and analytical soft-photon approximation analysis. The symmetry-resolved, partial-wave analysis identifies the transition rate and phase shift property in the attosecond photoelectron emission dynamics. Our findings provide critical insights into the ubiquitous attosecond optical timer and the underlying attosecond photoionization dynamics.

11.
Phys Rev Lett ; 128(24): 243201, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776471

RESUMO

Rotational dynamics of D_{2} molecules inside helium nanodroplets is induced by a moderately intense femtosecond pump pulse and measured as a function of time by recording the yield of HeD^{+} ions, created through strong-field dissociative ionization with a delayed femtosecond probe pulse. The yield oscillates with a period of 185 fs, reflecting field-free rotational wave packet dynamics, and the oscillation persists for more than 500 periods. Within the experimental uncertainty, the rotational constant B_{He} of the in-droplet D_{2} molecule, determined by Fourier analysis, is the same as B_{gas} for an isolated D_{2} molecule. Our observations show that the D_{2} molecules inside helium nanodroplets essentially rotate as free D_{2} molecules.

12.
Nature ; 609(7927): 507-511, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35820616

RESUMO

Electron dynamics in water are of fundamental importance for a broad range of phenomena1-3, but their real-time study faces numerous conceptual and methodological challenges4-6. Here we introduce attosecond size-resolved cluster spectroscopy and build up a molecular-level understanding of the attosecond electron dynamics in water. We measure the effect that the addition of single water molecules has on the photoionization time delays7-9 of water clusters. We find a continuous increase of the delay for clusters containing up to four to five molecules and little change towards larger clusters. We show that these delays are proportional to the spatial extension of the created electron hole, which first increases with cluster size and then partially localizes through the onset of structural disorder that is characteristic of large clusters and bulk liquid water. These results indicate a previously unknown sensitivity of photoionization delays to electron-hole delocalization and indicate a direct link between electronic structure and attosecond photoionization dynamics. Our results offer new perspectives for studying electron-hole delocalization and its attosecond dynamics.

13.
J Phys Chem Lett ; 13(25): 5881-5893, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35730581

RESUMO

By precisely controlling the waveform of ultrashort laser fields, electronic and nuclear motions in molecules can be steered on extremely short time scales, even in the attosecond regime. This new research field, termed "optochemistry", presents the light field in the time-frequency domain and opens new avenues for tailoring molecular reactions beyond photochemistry. This Perspective summarizes the ultrafast laser techniques employed in recent years for manipulating the molecular reactions based on waveform control of intense ultrashort laser pulses, where the chemical reactions can take place in isolated molecules, clusters, and various nanosystems. The underlying mechanisms for the coherent control of molecular dynamics are explicitly explored. Challenges and opportunities coexist in the field of optochemistry. Advanced technologies and theoretical modeling are still being pursued, with great prospects for controlling chemical reactions with unprecedented spatiotemporal precision.

14.
Chimia (Aarau) ; 76(6): 520-528, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069721

RESUMO

Photoionization is a process taking place on attosecond time scales. How its properties evolve from isolated particles to the condensed phase is an open question of both fundamental and practical relevance. Here, we review recent work that has advanced the study of photoionization dynamics from atoms to molecules, clusters and the liquid phase. The first measurements of molecular photoionization delays have revealed the attosecond dynamics of electron emission from a molecular shape resonance and their sensitivity to the molecular potential. Using electron-ion coincidence spectroscopy these measurements have been extended from isolated molecules to clusters. A continuous increase of the delays with the water-cluster size has been observed up to a size of 4-5 molecules, followed by a saturation towards larger clusters. Comparison with calculations has revealed a correlation of the time delay with the spatial extension of the created electron hole. Using cylindrical liquid-microjet techniques, these measurements have also been extended to liquid water, revealing a delay relative to isolated water molecules that was very similar to the largest water clusters studied. Detailed modeling based on Monte-Carlo simulations confirmed that these delays are dominated by the contributions of the first two solvation shells, which agrees with the results of the cluster measurements. These combined results open the perspective of experimentally characterizing the delocalization of electronic wave functions in complex systems and studying their evolution on attosecond time scales.

15.
Sci Adv ; 7(49): eabj8121, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860540

RESUMO

Shape resonances play a central role in many areas of science, but the real-time measurement of the associated many-body dynamics remains challenging. Here, we present measurements of recoil frame angle-resolved photoionization delays in the vicinity of shape resonances of CF4. This technique provides insights into the spatiotemporal photoionization dynamics of molecular shape resonances. We find delays of up to ∼600 as in the ionization out of the highest occupied molecular orbital (HOMO) with a strong dependence on the emission direction and a pronounced asymmetry along the dissociation axis. Comparison with quantum-scattering calculations traces the asymmetries to the interference of a small subset of partial waves at low kinetic energies and, additionally, to the interference of two overlapping shape resonances in the HOMO-1 channel. Our experimental and theoretical results establish a broadly applicable approach to space- and time-resolved photoionization dynamics in the molecular frame.

16.
Phys Rev Lett ; 126(6): 063201, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635700

RESUMO

The dissociative above-threshold double ionization (ATDI) of H_{2} in strong laser fields involves the sequential releasing of two electrons at specific instants with the stretching of the molecular bond. By mapping the releasing instants of two electrons to their emission directions in a multicycle polarization-skewed femtosecond laser pulse, we experimentally clock the dissociative ATDI of H_{2} via distinct photon-number-resolved pathways, which are distinguished in the kinetic energy release spectrum of two protons measured in coincidence. The timings of the experimentally resolved dissociative ATDI pathways are in good accordance with the classical predictions. Our results verify the multiphoton scenario of the dissociative ATDI of H_{2} in both time and energy fashion, strengthening the understanding of the strong-field phenomenon and providing a robust tool with a subcycle time resolution to clock abundant ultrafast dynamics of molecules.

17.
J Phys Chem Lett ; 11(8): 3129-3135, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32233496

RESUMO

We experimentally investigate the ultrafast photodissociation dynamics of the SO2 molecule induced by intense ultrashort laser pulses in a pump-probe scheme. Different three-body fragmentation pathways are discriminated using the time-dependent kinetic energy release spectrum with femtosecond time resolution. A nontrivial three-body fragmentation pathway, denoted as the bonding pathway, is unraveled, in which an intermediate fast rotating O2 molecule is formed before complete fragmentation. The ultrafast chemical bond rearrangement after electron release is tracked in real time. The bonding pathway generally exists in the three-body fragmentation processes induced by strong laser fields of different wavelengths, which is observed in infrared, ultraviolet, and mixed two-color cases. Our findings are significant for understanding the photon-induced ultrafast processes of the SO2 molecule in atmospheric chemistry.

18.
Phys Rev Lett ; 123(23): 233202, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868470

RESUMO

We experimentally observe the bond stretching time of one-photon and net-two-photon dissociation pathways of singly ionized H_{2} molecules driven by a polarization-skewed femtosecond laser pulse. By measuring the angular distributions of the ejected photoelectron and nuclear fragments in coincidence, the cycle-changing polarization of the laser field enables us to clock the photon-ionization starting time and photon-dissociation stopping time, analogous to a stopwatch. After the single ionization of H_{2}, our results show that the produced H_{2}^{+} takes almost the same time in the one-photon and net-two-photon dissociation pathways to stretch to the internuclear distance of the one-photon coupled dipole-transition between the ground and excited electronic states. The spatiotemporal mapping character of the polarization-skewed laser field provides us a straightforward route to clock the ultrafast dynamics of molecules with sub-optical-cycle time resolution.

19.
Nat Commun ; 10(1): 757, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765696

RESUMO

Atoms and molecules exposed to strong laser fields can be excited to the Rydberg states with very high principal quantum numbers and large orbitals. It allows acceleration of neutral particles, generate near-threshold harmonics, and reveal multiphoton Rabi oscillations and rich photoelectron spectra. However, the physical mechanism of Rydberg state excitation in strong laser fields is yet a puzzle. Here, we identify the electron-nuclear correlated multiphoton excitation as the general mechanism by coincidently measuring all charged and neutral fragments ejected from a H2 molecule. Ruled by the ac-Stark effect, the internuclear separation for resonant multiphoton excitation varies with the laser intensity. It alters the photon energy partition between the ejected electrons and nuclei and thus leads to distinct kinetic energy spectra of the nuclear fragments. The electron-nuclear correlation offers an alternative visual angle to capture rich ultrafast processes of complex molecules.

20.
Nat Commun ; 9(1): 5134, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510201

RESUMO

Orientation and alignment of molecules by ultrashort laser pulses is crucial for a variety of applications and has long been of interest in physics and chemistry, with the special emphasis on stereodynamics in chemical reactions and molecular orbitals imaging. As compared to the laser-induced molecular alignment, which has been extensively studied and demonstrated, achieving molecular orientation is a much more challenging task, especially in the case of asymmetric-top molecules. Here, we report the experimental demonstration of all-optical field-free three-dimensional orientation of asymmetric-top molecules by means of phase-locked cross-polarized two-color laser pulse. This approach is based on nonlinear optical mixing process caused by the off-diagonal elements of the molecular hyperpolarizability tensor. It is demonstrated on SO2 molecules and is applicable to a variety of complex nonlinear molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA