Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
EBioMedicine ; 103: 105070, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564827

RESUMO

BACKGROUND: Cholesteryl ester (CE) accumulation in intracellular lipid droplets (LDs) is an essential signature of clear cell renal cell carcinoma (ccRCC), but its molecular mechanism and pathological significance remain elusive. METHODS: Enabled by the label-free Raman spectromicroscopy, which integrated stimulated Raman scattering microscopy with confocal Raman spectroscopy on the same platform, we quantitatively analyzed LD distribution and composition at the single cell level in intact ccRCC cell and tissue specimens in situ without any processing or exogenous labeling. Since we found that commonly used ccRCC cell lines actually did not show the CE-rich signature, primary cancer cells were isolated from human tissues to retain the lipid signature of ccRCC with CE level as high as the original tissue, which offers a preferable cell model for the study of cholesterol metabolism in ccRCC. Moreover, we established a patient-derived xenograft (PDX) mouse model that retained the CE-rich phenotype of human ccRCC. FINDINGS: Surprisingly, our results revealed that CE accumulation was induced by tumor suppressor VHL mutation, the most common mutation of ccRCC. Moreover, VHL mutation was found to promote CE accumulation by upregulating HIFα and subsequent PI3K/AKT/mTOR/SREBPs pathway. Inspiringly, inhibition of cholesterol esterification remarkably suppressed ccRCC aggressiveness in vitro and in vivo with negligible toxicity, through the reduced membrane cholesterol-mediated downregulations of integrin and MAPK signaling pathways. INTERPRETATION: Collectively, our study improves current understanding of the role of CE accumulation in ccRCC and opens up new opportunities for treatment. FUNDING: This work was supported by National Natural Science Foundation of China (No. U23B2046 and No. 62027824), National Key R&D Program of China (No. 2023YFC2415500), Fundamental Research Funds for the Central Universities (No. YWF-22-L-547), PKU-Baidu Fund (No. 2020BD033), Peking University First Hospital Scientific and Technological Achievement Transformation Incubation Guidance Fund (No. 2022CX02), and Beijing Municipal Health Commission (No. 2020-2Z-40713).


Assuntos
Carcinoma de Células Renais , Ésteres do Colesterol , Neoplasias Renais , Mutação , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Proteína Supressora de Tumor Von Hippel-Lindau , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ésteres do Colesterol/metabolismo , Animais , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Camundongos , Neoplasias Renais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Linhagem Celular Tumoral , Progressão da Doença , Modelos Animais de Doenças
3.
STAR Protoc ; 5(1): 102898, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367235

RESUMO

The efficacy of chimeric antigen receptor (CAR) T cell immunotherapy is limited by insufficient infiltration and activation of T cells due to the immunosuppressive tumor microenvironment. Preclinical studies with optimized mouse CAR T cells in immunocompetent mouse cancer models will help define the mechanisms underlying immunotherapy resistance. Here, we present a protocol for preparing mouse T cells and generating CAR T cells. We then detail procedures for testing their therapeutic efficacy and tracking them in a syngeneic mouse glioma model. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.


Assuntos
Glioma , Receptores de Antígenos Quiméricos , Animais , Camundongos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Imunoterapia , Linfócitos T , Glioma/terapia , Modelos Animais de Doenças , Microambiente Tumoral
4.
Sci Adv ; 10(9): eadj4678, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416830

RESUMO

Cancer immunity is subjected to spatiotemporal regulation by leukocyte interaction with neoplastic and stromal cells, contributing to immune evasion and immunotherapy resistance. Here, we identify a distinct mesenchymal-like population of endothelial cells (ECs) that form an immunosuppressive vascular niche in glioblastoma (GBM). We reveal a spatially restricted, Twist1/SATB1-mediated sequential transcriptional activation mechanism, through which tumor ECs produce osteopontin to promote immunosuppressive macrophage (Mφ) phenotypes. Genetic or pharmacological ablation of Twist1 reverses Mφ-mediated immunosuppression and enhances T cell infiltration and activation, leading to reduced GBM growth and extended mouse survival, and sensitizing tumor to chimeric antigen receptor T immunotherapy. Thus, these findings uncover a spatially restricted mechanism controlling tumor immunity and suggest that targeting endothelial Twist1 may offer attractive opportunities for optimizing cancer immunotherapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Glioblastoma/genética , Células Endoteliais/patologia , Linhagem Celular Tumoral , Macrófagos , Terapia de Imunossupressão , Neoplasias Encefálicas/genética
5.
Nat Protoc ; 19(4): 1053-1082, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212641

RESUMO

The pathogenesis of cancer and cardiovascular diseases is subjected to spatiotemporal regulation by the tissue microenvironment. Multiplex visualization of the microenvironmental components, including immune cells, vasculature and tissue hypoxia, provides critical information underlying the disease progression and therapy resistance, which is often limited by imaging depth and resolution in large-volume tissues. To this end, light sheet fluorescence microscopy, following tissue clarification and immunostaining, may generate three-dimensional high-resolution images at a whole-organ level. Here we provide a detailed description of light sheet fluorescence microscopy imaging analysis of immune cell composition, vascularization, tissue perfusion and hypoxia in mouse normal brains and hearts, as well as brain tumors. We describe a procedure for visualizing tissue vascularization, perfusion and hypoxia with a transgenic vascular labeling system. We provide the procedures for tissue collection, tissue semi-clearing and immunostaining. We further describe standard methods for analyzing tissue immunity and vascularity. We anticipate that this method will facilitate the spatial illustration of structure and function of the tissue microenvironmental components in cancer and cardiovascular diseases. The procedure requires 1-2 weeks and can be performed by users with expertise in general molecular biology.


Assuntos
Neoplasias Encefálicas , Doenças Cardiovasculares , Animais , Camundongos , Microscopia de Fluorescência/métodos , Imageamento Tridimensional/métodos , Análise Espacial , Hipóxia , Microambiente Tumoral
6.
Molecules ; 29(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257288

RESUMO

Cabotegravir is an integrase strand transfer inhibitor (INSTI) for HIV treatment and prevention. Cabotegravir-based long-acting pre-exposure prophylaxis (PrEP) presents an emerging paradigm for infectious disease control. In this scheme, a combination of a high efficacy and low solubility of anti-infection drugs permits the establishment of a pharmaceutical firewall in HIV-vulnerable groups over a long period. Although the structure-activity-relationship (SAR) of cabotegravir as an INSTI is known, the structural determinants of its low solubility have not been identified. In this work, we have integrated multiple experimental and computational methods, namely X-ray diffraction, solid-state NMR (SSNMR) spectroscopy, solution NMR spectroscopy, automated fragmentation (AF)-QM/MM and density functional theory (DFT) calculations, to address this question. The molecular organization of cabotegravir in crystal lattice has been determined. The combination of very-fast magic-angle-sample-spinning (VF MAS) SSNMR and solution NMR, as supported by AF-QM/MM and DFT calculations, permits the identification of structural factors that contribute to the low aqueous solubility of cabotegravir. Our study reveals the multitasking nature of pharmacophores in cabotegravir, which controls the drug solubility and, meanwhile, the biological activity. By unraveling these function-defining molecular features, our work could inspire further development of long-acting HIV PrEP drugs.


Assuntos
Infecções por HIV , Profilaxia Pré-Exposição , Piridonas , Humanos , Farmacóforo , Dicetopiperazinas , Infecções por HIV/prevenção & controle
8.
Mol Diagn Ther ; 27(6): 741-752, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37587253

RESUMO

BACKGROUND: Von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary tumor syndrome with an incidence of approximately 1/36,000. VHL disease-associated clear cell renal cell carcinoma (ccRCC) is the most common congenital RCC. Although recent advances in treating RCC have improved the long-term prognosis of patients with VHL disease, kidney cancer is still the leading cause of death in these patients. Therefore, finding new targets for diagnosing and treating VHL disease-associated ccRCC is still essential. METHODS: In this study, we collected matched tumor tissues and normal samples from 25 patients with VHL disease-associated ccRCC, diagnosed and surgically treated in the Department of Urology, Peking University First Hospital. After screening, we performed whole genome bisulfite sequencing (WGBS) on 23 pairs of tissues and RNA-seq on 6 pairs of tissues. And we also compared the VHL disease-associated ccRCC transcriptome data with the sporadic ccRCC transcriptome data from the The Cancer Genome Atlas (TCGA) public database RESULTS: We found that the methylation level of VHL disease-associated ccRCC tumor tissues was significantly lower than that of normal tissues. The tumor tissues showed a difference in the copy number of 3p loss and 5q and 7q gain compared with normal tissues. We integrated RNA-seq and WGBS data to reveal methylation candidate genes associated with VHL disease-associated ccRCC; our results showed 124 hypermethylated and downregulated genes, and 245 hypomethylated and upregulated genes. By comparing the VHL disease-associated ccRCC transcriptome data with the sporadic ccRCC transcriptome data from the TCGA public database, we found that the major pathways of differential gene enrichment differed between them. CONCLUSIONS: Our study mapped the multiomics of copy number variation, methylation and mRNA level changes in tumor and normal tissues of clear cell renal cell carcinoma with VHL syndrome, which provides a solid foundation for the mechanistic study, biomarker screening, and therapeutic target discovery of clear cell renal cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Doença de von Hippel-Lindau , Humanos , Carcinoma de Células Renais/genética , Doença de von Hippel-Lindau/genética , Transcriptoma , Variações do Número de Cópias de DNA , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Neoplasias Renais/genética
9.
Transl Androl Urol ; 12(7): 1167-1183, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37554538

RESUMO

Background: Renal cell carcinoma (RCC) is a common and aggressive tumor. A newly discovered form of programmed cell death, ferroptosis, plays an important role in tumor development and progression. However, a clear prognostic correlation between Ferroptosis-related genes (FRGs) and RCC has not yet been established. In this study, prognostic markers associated with FRGs were investigated to improve the therapeutic, diagnostic, and preventive strategies available to patients with renal cancer. Methods: The present study analyzed the predictive value of 23 FRGs in RCC through bioinformatics techniques, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) tools, Kaplan-Meier survival analysis, Cox regression modeling, tumor mutational burden (TMB), CIBERSORT, and half maximal inhibitory concentration (IC50) difference analysis. Results: We screened FRGs by differentially expressed genes (DEGs) and overall survival (OS). Four candidate genes were obtained by hybridization. Then, we constructed a two-gene prognostic signature (NCOA4 and CDKN1A) via univariate Cox regression and multivariate stepwise Cox regression, which classified RCC patients into high- and low-risk groups, and patients in the high-risk group were found to have worse OS and progression-free survival (PFS). We also found that patients with higher TNM stage, T stage, and M stage had higher risk scores than those with lower TNM stage, T stage, and M stage (P<0.05). Males had higher risk scores than females. This signature was identified as an independent prognostic indicator for RCC. These results were validated in both the test cohort and the entire cohort. In addition, we also constructed a nomogram that predicted the OS in RCC patients, the consistency index (C-index) of the nomogram was 0.731 [95% confidence interval (CI): 0.672-0.790], the areas under the receiver operating characteristic (ROC) curves (AUCs) were 0.728, 0.704, and 0.898 at 1-, 3-, and 5-year, respectively, which shows that nomogram has good prediction ability. and we also analyzed the immune status and drug sensitivity between the high- and low-risk groups. Conclusions: We constructed a prognostic model associated with ferroptosis, which may provide clinicians with a reliable predictive assessment tool and offer new perspectives for the future clinical management of RCC.

11.
J Exp Clin Cancer Res ; 42(1): 159, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415241

RESUMO

BACKGROUND: The management of advanced clear cell renal cell carcinoma (ccRCC) remains a major challenge in clinical practice, and the construction of more reliable prognostic prediction models and the further elucidation of key molecular mechanisms of tumor progression are topics in urgent need of in-depth investigation. METHODS: We used CIBERSORT to estimate the proportion of 22 tumor-infiltrating immune cell types in the TCGA-KIRC cohort. Weighted gene co-expression network analysis, least absolute shrinkage and selection operator regression analysis were used to build risk prediction models. Expression patterns and clinical significance of TRAF2 were determined through bioinformatics analysis, real-time qPCR, Western Blot, immunohistochemistry. GSEA analysis, transmission electron microscopy, 2D/3D colony formation assay, cell migration and invasion assay, and tube-formation assay were used to investigate the underlying function and mechanism of the TRAF2/M2 macrophage/autophagy axis. RESULTS: We constructed a novel prognostic prediction model based on M2 macrophage-related genes, which was identified as an accurate, independent and specific prognostic risk model for ccRCC patients. A reliable nomogram was constructed to predict 1-, 3-, and 5-year overall survival for patients with ccRCC. As one of the constituent genes of the risk model, TRAF2 was determined to be upregulated in ccRCC and associated with poor clinical prognosis. We found that TRAF2 promotes malignant progression of ccRCC by regulating macrophage polarization, migration and angiogenesis. Mechanistically, we found that TRAF2 promotes the polarization of M2 macrophages, and this chemotaxis is achieved in an autophagy-dependent pathway. Orthotopic tumor growth assay results revealed that TRAF2 plays a key role as a promotor of ccRCC growth and metastasis. CONCLUSIONS: In conclusion, this risk model is highly predictive of prognostic in ccRCC patients, which is expected to promote improved treatment evaluation and comprehensive management of ccRCC. Moreover, our findings reveal that the TRAF2/M2 macrophage/autophagy axis plays a key regulatory role in the malignant progression of ccRCC, and suggest that TRAF2 is a potential novel therapeutic target for advanced ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Autofagia/genética , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Fator 2 Associado a Receptor de TNF/genética , Macrófagos Associados a Tumor
12.
Nat Commun ; 14(1): 4263, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460558

RESUMO

A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogonal separation capabilities of hydrophilic interaction liquid chromatography (HILIC) and trapped ion mobility spectrometry (TIMS). We further integrate isomer-resolved MS/MS methods onto HILIC-TIMS, which enable pinpointing double bond locations in phospholipids and sn-positions in phosphatidylcholine. This system profiles phospholipids at multiple structural levels with short analysis time (<10 min per LC run), high sensitivity (nM detection limit), and wide coverage, while data analysis is streamlined using a home-developed software, LipidNovelist. Notably, compared to our previous report, the system doubles the coverage of phospholipids in bovine liver and reveals uncanonical desaturation pathways in RAW 264.7 macrophages. Relative quantitation of the double bond location isomers of phospholipids and the sn-position isomers of phosphatidylcholine enables the phenotyping of human bladder cancer tissue relative to normal control, which would be otherwise indistinguishable by traditional profiling methods. Our research offers a comprehensive solution for lipidomic profiling and highlights the critical role of isomer analysis in studying lipid metabolism in both healthy and diseased states.


Assuntos
Glicerofosfolipídeos , Lipídeos , Lipídeos/análise , Animais , Bovinos , Fígado , Espectrometria de Massas em Tandem , Fosfolipídeos/análise , Camundongos , Células RAW 264.7 , Humanos , Cromatografia Líquida , Fosfatidilcolinas , Software , Glicerofosfolipídeos/análise , Esfingomielinas/análise , Neoplasias da Bexiga Urinária
15.
J Cancer ; 14(8): 1371-1380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283788

RESUMO

Objective: To investigate the potential roles of preoperative multiparametric magnetic resonance imaging (mpMRI) in identifying aggressive apical prostate cancer (APCa), thereby helping to facilitate patient counseling and surgical planning. Patients and Methods: We performed a retrospective analysis of 662 patients who underwent radical prostatectomy (RP) between January 2010 to October 2019. All patients underwent a preoperative biopsy and mpMRI of the prostate. APCa was defined as any malignant lesions in the prostatic apex. Clinical, pathological and mpMRI variables were retrieved. Univariate, multivariate, and receiver operating characteristic (ROC) analyses were performed. Results: A total of 214 (32.3%) patients had APCa. Patients presenting APCa were more likely to harbor adverse clinicopathological features (all p < 0.05). On univariable analysis, serum prostate-specific antigen (PSA) (p < 0.001), mpMRI-based PSA density (PSAD) (p < 0.001), Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) score (p < 0.001), number of positive cores (p < 0.001), percentage of positive cores (p < 0.001), max core involvement (p < 0.001) and biopsy GG (p = 0.001) were significant predictors of APCa. On multivariable analysis, mpMRI-based PSAD ≥ 0.27 ng/ml/cm3 (odds ratio [OR]: 2.251, p = 0.003), PI-RADSv2 score > 4 (OR: 1.611, p = 0.023) and percentage of positive cores (OR: 2.333, p = 0.041) were independently predictive of APCa during RP. The AUC values of mpMRI-based PSAD and PI-RADSv2 score were 0.646 (95% Confidence Intervals [CI]: 0.608-0.682) and 0.612 (95% CI: 0.568-0.656), respectively. Conclusion: Preoperative mpMRI-based PSAD and PI-RADSv2 score help identify the presence of APCa and may be useful for surgical decision-making during RP.

16.
J Med Genet ; 60(5): 477-483, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080588

RESUMO

BACKGROUND: Approximately 20%-40% of patients with von Hippel-Lindau (VHL) disease, an autosomal dominant hereditary disease, exhibit large deletions (LDs). Few studies have focused on this population. Hence, we aimed to elucidate the genotype-phenotype correlations and clinical outcomes in VHL patients with LDs. METHODS: In this retrospective study, we included 119 patients with VHL disease from 50 unrelated families in whom LDs were detected using traditional and next-generation sequencing methods. Other germline mutations were confirmed by Sanger sequencing. Genotype-phenotype correlations and survival were analysed in different groups using Kaplan-Meier and Cox regression. We also evaluated therapeutic response to tyrosine kinase inhibitor (TKI) therapy. RESULTS: The overall penetrance of patients aged <60 was 95.2%. Two VHL patients with LDs also carried CHEK2 and FLCN germline mutations. An earlier age of onset of retinal haemangioblastoma was observed in the next generation. Patients with exon 2 deletion of VHL had an earlier onset age of renal cell carcinoma and pancreatic lesions. The risk of renal cell carcinoma was lower in VHL patients with LDs and a BRK1 deletion. The group with earlier age of onset received poorer prognosis. Four of eight (50%) patients showed partial response to TKI therapy. CONCLUSION: The number of generations and the status of exon 2 could affect age of onset of VHL-related manifestations. Onset age was an independent risk factor for overall survival. TKI therapy was effective in VHL patients with LDs. Our findings would further support clinical surveillance and decision-making processes.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Doença de von Hippel-Lindau , Humanos , Doença de von Hippel-Lindau/complicações , Doença de von Hippel-Lindau/genética , Doença de von Hippel-Lindau/epidemiologia , Carcinoma de Células Renais/genética , Estudos Retrospectivos , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Estudos de Associação Genética , Neoplasias Renais/genética
17.
Heliyon ; 9(3): e13707, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36873531

RESUMO

Background: Dysregulation of long noncoding RNAs (lncRNAs) has been reported to be associated with multiple tumors where they act as tumor suppressors or accelerators. The lncRNA CYTOR was identified as an oncogene involved in many cancers, such as gastric cancer, colorectal cancer, hepatocellular carcinoma, and renal cell carcinoma. However, the role of CYTOR in bladder cancer (BCa) has rarely been reported. Methods: Using cancer datasets from The Cancer Genome Atlas (TCGA) program, we analyzed the association between CYTOR expression and prognostic value, oncogenic pathways, antitumor immunity and immunotherapy response in BCa. The influence of CYTOR on the immune infiltration pattern in the urothelial carcinoma microenvironment was further verified in our dataset. Single-cell analysis revealed the role of CYTOR in the tumor microenvironment (TME) of BCa. Finally, we evaluated the expression of CYTOR in BCa in the Peking University First Hospital (PKU-BCa) dataset and its correlation with the malignant phenotype of BCa in vitro and in vivo. Results: The results indicated that CYTOR was highly expressed in multiple cancer samples, including BCa, and increased CYTOR expression contributed to poor overall survival (OS). Additionally, elevated CYTOR expression was significantly correlated with clinicopathological features of BCa, such as female sex, advanced TNM stage, high histological grade and non-papillary subtype. Functional characterization revealed that CYTOR may be involved in immune-related pathways and the epithelial mesenchymal transformation (EMT) process. Moreover, CYTOR had a significant association with infiltrating immune cells, including M2 macrophages and regulatory T cells (Tregs). CYTOR facilitates the crosstalk between cancer-associated fibroblasts (CAFs) and macrophages, and mediates M2 polarization of macrophages. Correlation analysis revealed a positive correlation between CYTOR expression and programmed cell death-1 (PD-1)/programmed death ligand 1 (PD-L1)/expression and other targets for specific immunotherapy in BCa, which are recognized to predict the efficacy of immunotherapy. Conclusions: These results suggest that CYTOR serves as a potential biomarker for predicting survival outcome, TME cell infiltration characteristics and immunotherapy response in BCa.

18.
Cell Death Dis ; 14(3): 212, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966163

RESUMO

Recent evidences have suggested that Zinc finger protein 582 (ZNF582) plays different important roles in various tumors, but its clinical role, biological function and regulatory mechanism in clear cell renal cell carcinoma (ccRCC) are still vague. Through analyzing GEO and TCGA-KIRC data and validation with local samples, we identified the low expression pattern of ZNF582 in ccRCC. Decreased ZNF582 expression is correlated with higher tumor stage and grade, distant metastasis and poor prognosis. By analyzing the DNA methylation data of ccRCC in TCGA-KIRC and using Massarray DNA methylation and demethylation analysis, we confirmed the hypermethylation status of ZNF582 in ccRCC and its negative regulation on ZNF582 expression. Using cell phenotype experiments and orthotopic kidney tumor growth models, we determined the inhibitory effect of ZNF582 overexpression on ccRCC growth and metastasis in vivo and in vitro. Mechanistically, using TMT (Tandem mass tags) quantitative proteomics test, Co-IP (Co-immunoprecipitation) and Western Blot experiments, we clarified that ZNF582 binds to TJP2 and up-regulates TJP2 protein expression. Increased TJP2 protein combines with ERK2 to promote ERK2 protein expression and suppresses the phosphorylation of ERK2, thereby inhibiting the growth and metastasis of ccRCC. In general, our findings provide the first solid theoretical rationale for targeting ZNF582/TJP2/ERK2 axis to improve ccRCC treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Fosforilação , Neoplasias Renais/metabolismo , Rim/patologia , Proteínas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteína da Zônula de Oclusão-2/genética , Proteína da Zônula de Oclusão-2/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA