Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984478

RESUMO

Photocatalytic ammonia production holds immense promise as an environmentally sustainable approach to nitrogen fixation. In this study, In2O3/In2S3-ZnCdS ternary heterostructures were successfully constructed through an innovative in situ anion exchange process, coupled with a low-temperature hydrothermal method for ZnCdS (ZCS) incorporation. The resulting In2O3/In2S3-ZCS photocatalyst was proved to be highly efficient in converting N2 to NH3 under mild conditions, eliminating the need for sacrificial agents or precious metal catalysts. Notably, the NH4+ yield of In2O3/In2S3-0.5ZCS reached a significant level of 71.2 µmol g-1 h-1, which was 10.47 times higher than that of In2O3 (6.8 µmol g-1 h-1) and 3.22 times higher than that of In2O3/In2S3 (22.1 µmol g-1 h-1). This outstanding performance can be attributed to the ternary heterojunction configuration, which significantly extends the lifetime of photogenerated carriers and enhances the spatial separation of electrons and holes. The synergistic interplay between CdZnS, In2S3, and In2O3 in the heterojunction facilitates electron transport, thereby boosting the rate of the photocatalytic nitrogen fixation reaction. Our study not only validates the efficacy of ternary heterojunctions in photocatalytic nitrogen fixation but also offers valuable insights for the design and construction of such catalysts for future applications.

2.
J Colloid Interface Sci ; 675: 52-63, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964124

RESUMO

Construction of hierarchical architecture with suitable band alignment for graphitic carbon nitride (g-C3N4) played a pivotal role in enhancing the efficiency of photocatalysts. In this study, a novel attapulgite-intercalated g-C3N4/ZnIn2S4 nanocomposite material (ZIS/CN/ATP, abbreviated as ZCA) was successfully synthesized using the freeze-drying technique, thermal polymerization, and a simple low-temperature hydrothermal method. Attapulgite (ATP) was intercalated into g-C3N4 to effectively regulate its interlayer structure. The results reveal a substantial enlargement of its internal space, thereby facilitating the provision of additional active sites for improved dispersibility of ZnIn2S4. Notably, the optimized photocatalyst, comprising a mass ratio of ATP, g-C3N4, and ZnIn2S4 at 1:1:2.5 respectively, achieves an outstanding hydrogen evolution rate of 3906.15 µmol g-1h-1, without the need for a Pt co-catalyst. This rate surpasses that of pristine g-C3N4 by a factor of 475 and ZnIn2S4 by a factor of 5, representing a significant improvement in performance. This significant enhancement can be primarily attributed to the higher specific surface area, richer active sites, broadened light response range, and efficient interfacial charge transfer channels of the ZCA composite photocatalyst. Furthermore, the Z-scheme photocatalytic mechanism for the sandwich-like layered structure heterojunction was thoroughly investigated using diverse characterization techniques. This work offers new insights for enhancing photocatalytic performance through the expanded utilization of natural minerals, paving the way for future advancements in this field.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38965043

RESUMO

Solid oxide electrolysis cells (SOECs) show significant promise in converting CO2 to valuable fuels and chemicals, yet exploiting efficient electrode materials poses a great challenge. Perovskite oxides, known for their stability as SOEC electrodes, require improvements in electrocatalytic activity and conductivity. Herein, vanadium(V) cation is newly introduced into the B-site of Sr2Fe1.5Mo0.5O6-δ perovskite to promote its electrochemical performance. The substitution of variable valence V5+ for Mo6+ along with the creation of oxygen vacancies contribute to improved electronic conductivity and enhanced electrocatalytic activity for CO2 reduction. Notably, the Sr2Fe1.5Mo0.4V0.1O6-δ based symmetrical SOEC achieves a current density of 1.56 A cm-2 at 1.5 V and 800 °C, maintaining outstanding durability over 300 h. Theoretical analysis unveils that V-doping facilitates the formation of oxygen vacancies, resulting in high intrinsic electrocatalytic activity for CO2 reduction. These findings present a viable and facile strategy for advancing electrocatalysts in CO2 conversion technologies.

4.
ACS Appl Mater Interfaces ; 15(39): 45905-45914, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37748034

RESUMO

Solid oxide electrolysis cells (SOECs) show great promise in converting CO2 to valuable products. However, their practicality for the CO2 reduction reaction (CO2RR) is restricted by sluggish kinetics and limited durability. Herein, we propose a novel medium-entropy perovskite, Sr2(Fe1.0Ti0.25Cr0.25Mn0.25Mo0.25)O6-δ (SFTCMM), as a potential electrode material for symmetrical SOEC toward CO2RR. Experimental and theoretical results unveil that the configuration entropy of SFTCMM perovskites contributes to the strengthened metal 3d-O 2p hybridization and the reduced O 2p bond center. This variation of electronic structure benefits oxygen vacancy creation and diffusion as well as CO2 adsorption and activation and ultimately accelerates CO2RR and oxygen electrocatalysis kinetics. Notably, the SFTCMM-based symmetrical SOEC delivers an excellent current density of 1.50 A cm-2 at 800 °C and 1.5 V, surpassing the prototype Sr2Fe1.5Mo0.5O6-δ (SFM, 1.04 A cm-2) and most of the state-of-the-art electrodes for symmetrical SOECs. Moreover, the SFTCMM-based symmetrical SOEC demonstrates stable CO2RR operation for 160 h.

5.
Small ; 19(50): e2302987, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649227

RESUMO

Graphite with abundant reserves has attracted enormous research interest as an anode of potassium-ion batteries (PIBs) owing to its high plateau capacity of 279 mAh g-1 at ≈0.2 V in conventional carbonate electrolytes. Unfortunately, it suffers from fast capacity decay during K+ storage. Herein, an ultrastable graphite-potassium anode is developed through binder chemistry. Polyvinyl alcohol (PVA) is utilized as a water-soluble binder to generate a uniform and robust KF-rich SEI film on the graphite surface, which can not only inhibit the electrolyte decomposition, but also withstand large volume expansion during K+ -insertion. Compared to the PVDF as binder, PVA-based graphite anode can operate for over 2000 cycles (running time of 406 days at C/3) with 97% capacity retention in KPF6 -based electrolytes. The initial Coulombic efficiency (ICE) of graphite anode is as high as 81.6% using PVA as the binder, higher than that of PVDF (40.1%). Benefiting from the strong adhesion ability of PVA, a graphite||fluorophosphate K-ion full battery is further built through 3D printing, which achieves a record-high areal energy of 8.9 mWh cm-2 at a total mass loading of 38 mg cm-2 . These results demonstrate the important role of binder in developing high-performance PIBs.

6.
Nanoscale ; 15(34): 13932-13951, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581599

RESUMO

3D printing, also known as additive manufacturing, is capable of fabricating 3D hierarchical micro/nanostructures by depositing a layer-upon-layer of precursor materials and solvent-based inks under the assistance of computer-aided design (CAD) files. 3D printing has been employed to construct 3D hierarchically micro/nanostructured electrodes for rechargeable batteries, endowing them with high specific surface areas, short ion transport lengths, and high mass loading. This review summarizes the advantages and limitations of various 3D printing methods and presents the recent developments of 3D-printed electrodes in rechargeable batteries, such as lithium-ion batteries, sodium-ion batteries, and lithium-sulfur batteries. Furthermore, the challenges and perspectives of the 3D printing technique for electrodes and rechargeable batteries are put forward. This review will provide new insight into the 3D printing of hierarchically micro/nanostructured electrodes in rechargeable batteries and promote the development of 3D printed electrodes and batteries in the future.

7.
ACS Appl Mater Interfaces ; 15(22): 26766-26777, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246583

RESUMO

Seeking highly efficient, stable, and cost-effective bifunctional electrocatalysts of rechargeable Zn-air batteries (ZABs) is the top-priority for developing new generation portable electronic devices. For this, the rational and effective structural design, interface engineering, and electron recombination on electrocatalysts should be taken into account to reduce the reaction overpotential and expedite the kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, we construct a MnCo-based metal organic framework-derived heterogeneous MnS-CoS nanocrystals, which are anchored on free-standing porous N-doped carbon fibers (PNCFs) by the in situ growth method and vulcanization process. Benefiting from the abundant vacancies and active sites, strong interfacial coupling as well as favorable conductivity, the MnS-CoS/PNCFs composite electrode delivers a mentionable oxygen electrocatalytic activity and stability with a half-wave potential of 0.81 V for ORR and an overpotential of 350 mV for OER in the alkaline medium. Of note, the flexible rechargeable ZAB using MnS-CoS/PNCFs as binder-free air cathode offers high power density of 86.7 mW cm-2, large specific capacity of 563 mA h g-1, and adapts to different bending degree of operation. In addition, the density functional theory calculation clarifies that the heterogeneous MnS-CoS nanocrystals reduces the reaction barrier and enhances the conductivity of the catalyst and the adsorption capacity of the intermediates during the ORR and OER process. This study opens up a new insight to the design of the self-supported air cathode for flexible electronic devices.

8.
Small ; 19(11): e2207224, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36651006

RESUMO

Sodium-ion batteries (SIBs) hold great promise owing to the naturally abundant sodium resource and high safety. The research focus of SIBs is usually directed toward electrode materials, while the binder as an important component is rarely investigated. Herein, a cross-linked sodium alginate (SA)/graphene oxide (GO) binder is judiciously designed to serve as a robust artificial interphase on the surface of both anode and cathode of SIBs. Benefiting from the cross-linking continuous network structure as well as the highly hydrophilic nature, the SA-GO binder possesses a large tensile strength of 197.7 Mpa and a high ionic conductivity of 0.136 mS cm-1 , superior to pure SA (93.8 Mpa, 0.025 mS cm-1 ). Moreover, the structural design of SA-GO binder exhibits a strong binding ability to guarantee structural integrity during cycling. To demonstrate its effectiveness, polyanion-type phosphates (e.g., Na3 (VO)2 (PO4 )2 F) and chalcogenides (e.g., MoS2 , VS2 ) are adopted as cathode and anode materials of SIBs, respectively. As compared to traditional binders (e.g., PVDF, SA), electrodes with the SA-GO binder exhibits significantly increased rate capability and cycling stability, such as Na3 (VO)2 (PO4 )2 F (40 C fast-charge, 84% capacity retention after 1000 cycles). This work highlights the role of novel aqueous-based binders in developing next-generation sodium-storage devices.

9.
Nanoscale ; 14(43): 16139-16147, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36259988

RESUMO

Lithium-sulfur (Li-S) batteries have been regarded as potential next-generation batteries owing to their ultrahigh theoretical capacity and abundance of sulfur. However, polysulfide shuttling, poor electronic conductivity, and severe volume expansion limit their commercial prospects. In this work, we rationally constructed a 3D porous Ti3C2Tx/CNTs-Co9S8 heterostructure derived from a zeolite imidazole framework (ZIF)/Ti3C2Tx MXene composite via carbonization and subsequent sulfidation. In this 3D porous Ti3C2Tx/CNTs-Co9S8 heterostructure, the 3D porous Ti3C2Tx MXene structure can provide facilitated ion and electron transport, good structural stability, and polar bonds to anchor sulfur and polysulfides. The formed CNTs can enhance ion diffusion and electron transport. The Co9S8 nanoparticles can accelerate the conversion reaction of polysulfides to Li2S, which can further prevent polysulfide shuttling. The 3D porous structure can buffer the electrode volume change upon cycling. This rationally designed Ti3C2Tx/CNTs-Co9S8/S cathode exhibits a high initial capacity of 1389.8 mA h g-1 at 0.1C, good cyclic stability (730.7 mA h g-1 at 0.2C after 100 cycles), and excellent rate capacities (530.7 mA h g-1 at 1C). When the S loading was 2.5 mg cm-2, the Ti3C2Tx/CNTs-Co9S8/S cathode still exhibited a reversible capacity of 472.8 mA h g-1 at 0.5C after 300 cycles.

10.
Chem Commun (Camb) ; 58(80): 11276-11279, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36124676

RESUMO

Lithium‖graphite dual-ion batteries (DIBs) have received widespread attention due to their low cost and high operating voltage (nearly 5 V). However, DIBs face several challenges such as decomposition of the electrolyte under high voltage and structural deterioration of graphite. Herein, montmorillonite (MMT) is employed to generate a favorable and robust cathode electrolyte interface (CEI) layer on the graphite surface. As a result, the DIBs exhibit a 100% capacity retention for 500 cycles at 2C. Even after 1000 cycles at 5C, the capacity retention is still as high as 99%.

11.
Nanoscale ; 14(33): 11923-11944, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35920652

RESUMO

2D MXenes have attracted considerable attention due to their high electronic conductivity, tunable metal compositions, functional termination groups, low ion diffusion barriers, and abundant active sites. However, MXenes suffer from sheet stacking and partial surface oxidation, limiting their energy storage and water treatment development. To solve these problems and enhance the performance of MXenes in practical applications, various hierarchical MXene/transition metal oxide (MXene/TMO) heterostructures are rationally designed and constructed. The hierarchical MXene/TMO heterostructures can not only prevent the stacking of MXene sheets and improve the electronic conductivity and buffer the volume change of TMOs during the electrochemical reaction process. The synergistic effect of conductive MXenes and active TMOs also makes MXene/TMO heterostructures promising electrode materials for energy storage and seawater desalination. This review mainly introduces and discusses the recent research progress in MXene/TMO heterostructures, focusing on their synthetic strategies, heterointerface engineering, and applications in rechargeable batteries, capacitors, and capacitive deionization (CDI). Finally, the key challenges and prospects for the future development of the MXene/TMO heterostructures in rechargeable batteries, capacitors, and CDI are proposed.

12.
Small ; 18(27): e2201792, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35661404

RESUMO

Integration of fast charging, high capacity, and mechanical flexibility into one electrode is highly desired for portable energy-storage devices. However, a high charging rate is always accompanied by capacity decay and cycling instability. Here, a necklace-structured composite membrane consisting of micron-sized FeSe2 cubes uniformly threaded by carbon nanofibers (CNF) is reported. This unique electrode configuration can not only accommodate the volumetric expansion of FeSe2 during the lithiation/delithiation processes for structural robustness but also guarantee ultrafast kinetics for Li+ entry. At a high mass loading of 6.2 mg cm-2 , the necklace-like FeSe2 @CNF electrode exhibits exceptional rate capability (80.7% capacity retention from 0.1 to 10 A g-1 ) and long-term cycling stability (no capacity decay after 1100 charge-discharge cycles at 2 A g-1 ). The flexible lithium-ion capacitor (LIC) fabricated by coupling a pre-lithiated FeSe2 @CNF anode with a porous carbon cathode delivers impressive volumetric energy//power densities (98.4 Wh L-1 at 157.1 W L-1 , and 58.9 Wh L-1 at 15714.3 W L-1 ). The top performance, long-term cycling stability, low self-discharge rate, and high mechanical flexibility make it among the best LICs ever reported.

13.
J Colloid Interface Sci ; 625: 502-511, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35749845

RESUMO

Interface engineering strategy has been developed to design efficient catalysts for boosting electrocatalytic performance in past few decades. Herein, heterojunctions of PrCoO3/Co3O4 nanocages (PCO/Co3O4 NCs) with atomic-level engineered interfaces and rich oxygen vacancies are proposed for Zn-air batteries. The synthesized product shows exceptional bifunctional activity and robust stability towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The enhanced catalytic capacity is primary attributed to the synergistic effect of PCO/Co3O4, evidenced by the experimental results and theoretical calculations. More importantly, the PCO/Co3O4 NCs assembled liquid Zn-air battery exhibits a power density of 182 mW cm-2 and a long-term operation of 185 h. When assembled into solid-state cable type battery, this newly designed catalyst also reaches a stable open circuit voltage (1.359 V) and a peak power density of 85 mW cm-3. Our findings provide essential guidelines of engineering heterostructured electrocatalysts for future wearable electronic devices.

14.
J Colloid Interface Sci ; 607(Pt 1): 760-768, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34534767

RESUMO

Poor visible light utilization and charge separation efficiency of TiO2 restrict its extensive application in the photocatalytic field. Herein, a specific Z-scheme TiO2-x/Cu/ZnO heterojunction was successfully constructed by atomic layer deposition (ALD) technique and spray pyrolysis technology. Benefited from the surface plasmon resonance (SPR) effect of Cu and Z-scheme heterojunction, the visible light absorption capacity was greatly enhanced. Meanwhile, ZnO nanolayer coating, prepared by ALD technique, protects Cu element to hinder its oxidation, thus enhancing the separation efficiency of photogenerated carriers. Therefore, the photocatalytic hydrogen production performance was significant improved, exhibiting a maximum value of 342.0 µmol·g-1·h-1 for the optimal B-T-0.1C-10Z (black TiO2/0.1Cu/10 nm ZnO) sample without any noble-metal cocatalyst, which is higher than pure TiO2 (310.7 µmol·g-1·h-1, with 3 wt% Pt) synthesized by spray pyrolysis method under equal conditions. In addition, a possible mechanism for the enhanced performance was briefly discussed based on the experimental results.

15.
Nanoscale ; 13(47): 19740-19770, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34821248

RESUMO

MXenes have gained rapidly increasing attention owing to their two-dimensional (2D) layered structures and unique mechanical and physicochemical properties. However, MXenes have some intrinsic limitations (e.g., the restacking tendency of the 2D structure) that hinder their practical applications. Transition metal chalcogenide (TMC) materials such as SnS, NiS, MoS2, FeS2, and NiSe2 have attracted much interest for energy storage and conversion by virture of their earth-abundance, low costs, moderate overpotentials, and unique layered structures. Nonetheless, the intrinsic poor electronic conductivity and huge volume change of TMC materials during the alkali metal-ion intercalation/deintercalation process cause fast capacity fading and poor-rate and poor-cycling performances. Constructing heterostructures based on metallic conductive MXenes and highly electrochemically active TMCs is a promising and effective strategy to solve these problems and enhance the electrochemical performances. This review highlights and discusses the recent research development of MXenes and hierarchical MXene/TMC heterostructures, with a focus on the synthesis strategies, surface/heterointerface engineering, and potential applications for lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, supercapacitors, electrocatalysis, and photocatalysis. The critical challenges and perspectives of the future development of MXenes and hierarchical MXene/TMC heterostructures for electrochemical energy storage and conversion are forecasted.

16.
Small ; 16(33): e2001950, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32643312

RESUMO

Hollow micro-/nanostructures are widely explored for energy applications due to their unique structural advantages. The synthesis of hollow structures generally involves a "top-down" casting process based on hard or soft templates. Herein, a new and generic confinement strategy is developed to fabricate composite hollow fibers. A thin and homogeneous atomic-layer-deposition (ALD) Al2 O3 layer is employed to confine the pyrolysis of precursor fibers, which transform into metal (or metal oxide)-carbon composite hollow fibers after removal of Al2 O3 . Because of the uniform coating by ALD, the resultant composite hollow fibers exhibit a hollow interior from heads to ends even if they are millimeter long. V, Fe, Co, and Ni-based hollow nanofibers, demonstrating the versatility of this synthesis method, are successfully synthesized. Because of the carbon constituent, these composite fibers are particularly useful for energy applications. Herein, the as-obtained hollow V2 O3 -C fiber membrane is employed as a freestanding and flexible electrode for lithium-ion capacitor. The device shows an impressive energy density and a high power density.

17.
Nanoscale ; 12(16): 9048-9057, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32271859

RESUMO

Developing cost-effective, stable and environmentally friendly catalysts is of prime importance for the commercial application of overall water splitting. Perovskite oxides have emerged as one of the promising bifunctional catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). However, their bifunctional activity, especially towards HER, is still not meeting the anticipated energy efficiency. Herein, we highlight a facile and efficient surface modification approach for boosting the bifunctionality of perovskites for overall water splitting. The construction of amorphous cobalt hydroxide (Co(OH)2) on the Sr2Fe1.5Mo0.5O6-δ (SFM) surface is conducted via an atomic layer deposition (ALD) technology. The optimized crystalline core-amorphous shell structure only needs 384 mV to reach a current density of 10 mA cm-2 for the OER and 322 mV at -10 mA cm-2 for the HER in alkaline media. The optimized catalytic activity is probably due to the unique structure and the synergistic effect between Co(OH)2 and SFM, resulting in the large electrochemical surface area, abundant oxygen vacancies and fast electron transfer. The cell assembled with Co(OH)2/SFM-NF as both cathode and anode electrodes delivers a low voltage of 1.60 V to achieve 10 mA cm-2 and remarkable stability over 68 h in practical operation, offering a viable alternative for overall water splitting.

18.
Nanoscale ; 11(43): 20715-20724, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31642836

RESUMO

Developing advanced lithium-ion hybrid capacitors (LIHCs) has a critical challenge of matching kinetics and capacity between the battery-type anode and the capacitive cathode. In this work, a novel "dual carbon" LIHC configuration is constructed to overcome such a discrepancy. Specifically, hollow nitrogen-doped carbon nanoboxes (HNCNBs) are synthesized by a simple template-assisted strategy. As an anode material (0.01-3 V vs. Li/Li+), the HNCNB electrode exhibits high specific capacity (850 mA h g-1 at 0.1 A g-1) and superior rate capability (321 mA h g-1 at 20 A g-1). After alkaline activation, the HNCNBs become highly porous (PHNCNBs), which offers better capacitance performance within the potential window from 2.5 to 4.5 V (vs. Li/Li+) than commercial activated carbon (AC). Coupling a pre-lithiated HNCNB anode with a PHNCNB cathode forms a dual-carbon LIHC. Since the similar hollow structure in both electrodes could diminish the diffusion distance, the as-prepared HNCNB//PHNCNB LIHC provides high energy densities of 148.5 and 112.1 W h kg-1 at power densities of 250 and 25 000 W kg-1, respectively, together with long-term cycling stability, which efficiently bridges the gap between supercapacitors and lithium ion batteries. Furthermore, the self-discharge behavior and the temperature-dependent performance are also investigated.

19.
Small ; 15(36): e1902466, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31328890

RESUMO

Sodium-vanadium fluorophosphate (Na3 V2 O2 x (PO4 )2 F3-2 x , NVPF, 0 ≤ x ≤ 1) is considered to be a promising Na-storage cathode material due to its high operation potentials (3.6-4 V) and minor volume variation (1.8%) during Na+ -intercalation. Research about NVPF is mainly focused on powder-type samples, while its ordered array architecture is rarely reported. In this work, large-area and uniform Na3 (VO)2 (PO4 )2 F cuboid arrays are vertically grown on carbon nanofiber (CNF) substrates for the first time. Owing to faster electron/ion transport and larger electrolyte-electrode contact area, the as-prepared NVPF array electrode exhibits much improved Na-storage properties compared to its powder counterpart. Importantly, a quasi-solid-state sodium-ion hybrid capacitor (SIHC) is constructed based on the NVPF array as an intercalative battery cathode and porous CNF as a capacitive supercapacitor anode together with the P(VDF-HFP)-based polymer electrolyte. This novel hybrid system delivers an attractive energy density of ≈227 W h kg-1 (based on total mass of two electrodes), and still remains as high as 107 Wh kg-1 at a high specific power of 4936 W kg-1 , which pushes the energy output of sodium hybrid capacitors toward a new limit. In addition, the growth mechanism of NVPF arrays is investigated in detail.

20.
ACS Appl Mater Interfaces ; 11(21): 19115-19122, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31062955

RESUMO

Lithium-ion capacitors (LICs) are considered to be promising power sources due to their combination of high-rate capacitors and high-capacity batteries. However, development of a high-performance LIC is still restricted by the sluggish intercalation reaction and unsatisfied specific capacities in battery-type bulk anodes. To overcome these issues, herein, we utilize two-step atomic layer deposition (ALD) to realize a uniform coating of FeO x and TiO2 on CuO nanorods, which results in the formation of ternary CuO@FeO x@TiO2 composite. After further treatment in H2/Ar atmosphere, the as-derived Fe3O4 is encapsulated between conductive Cu nanorod and hollow TiO2 shell (denoted as Cu@Fe3O4@TiO2). Owing to the rational design, the binder-free Cu@Fe3O4@TiO2 electrode exhibits an ultrahigh Li-ion storage capacity (1585 mA h g-1 at 0.2 A g-1), superior rate capability, and excellent cycle performance (no decay after 1000 cycles), which could efficiently boost the energy-storage capability of LICs. By employing an anode of Cu@Fe3O4@TiO2 and a cathode of activated carbon, the as-constructed full LIC device provides high energy//powder densities (154.8 Wh kg-1 at 200 W kg-1; 66.2 Wh kg-1 at 30 kW kg-1). These superior results demonstrate that ALD-enabled architectures hold great promise for synthesizing high-capacity anodes for LICs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA