Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 332, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172330

RESUMO

Underground coal mining leads to land subsidence, which, in turn, results in damage to buildings and infrastructure, disturbs the original ecological environment, and hinders the sustainable development of coal mining cities. A reasonable estimation of land subsidence, on the other hand, is the foundation for building protection, land reclamation, and ecological environment reconstruction. However, when we applied the existing land subsidence estimation theory to the deep mining areas of the Ordos coalfield in western China, there was a significant deviation between the estimations and the measurements. To explain such unusual case, we propose using the overburden's average GSI (Geological Strength Index) value instead of the compressive strength (UCS) of rock specimens for a better representation of the overburden's overall properties. By using on-site subsidence monitoring results and historical data, we provided evidence which supports that the overburden's average GSI value has a much greater impact on subsidence rates than the UCS. Subsequently, we investigated the relationship between three typical overburden's GSI values and the subsidence rates via a calibrated numerical model, revealing the variation patterns of maximum surface subsidence when the overburden's average GSI value is set at 30, 50, and 75, respectively. Finally, on the basis of the measured and simulated results, we discussed a non-conventional strip mining method for mining subsidence control in the deep mining areas of the Ordos coalfield in western China, and explained why it is possible and what are the significant advantages behind. The proposed methods, findings, and suggestions in this paper are therefore quite helpful for researchers and engineers who wish to estimate and control the mining-induced land subsidence, as well as for those who are particularly interested in the study of environment science related to land subsidence.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36429619

RESUMO

Disasters such as rock bursts and mine earthquakes became increasingly serious with the increase in mining depth in Erdos Coal Field and became serious problems that restrict high-strength continuous mining of coal mines. In this study, strata movement and energy polling distribution of ultrathick weak-bonding sandstone layers were controlled by the local filling−caving multi-faces coordinated mining technique, which was based on the analysis of subsidence and overlying structural characteristics in the Yingpanhao mining area. Moreover, the influencing factors and the control effect laws were investigated. Surface subsidence and energy polling distribution control effects of different mining modes were compared, which confirmed the superiority of local filling based on the main key stratum. According to the results, the maximum surface subsidence velocity of the first mining face was 1.24 mm/d, which indicates the presence of a logistic functional relationship between the mining degree and subsidence factors. When the mining degree was close to full mining, the practical surface subsidence was smaller than the corresponding logistic functional value. The largest influencing factor for the strata movement control effect of partial filling mining based on the main key stratum was the width of the caving face, followed by the filling ratio, section pillar width, and width of the filling face, successively. With respect to the influencing degree on the energy polling distribution of partial filling mining based on the main key stratum, the order followed as section pillar width > filling ratio > caving working face > width of backfilling working face. Additionally, the comparative analysis from the perspectives of control effect, resource utilization, and cost-effectiveness demonstrated that partial filling mining based on the main key stratum was one of the techniques with high cost-effectiveness in controlling strata movement and relieving rock bursts, mining earthquakes, and subsidence disasters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA