Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Phycol ; 59(6): 1258-1271, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37688517

RESUMO

Membrane lipids play essential roles in regulating physiological properties in higher plants and algae. Monogalactosyldiacylglycerol (MGDG) is a major thylakoid membrane lipid, and it is an important source of polyunsaturated fatty acids for cells, plays a key role in the biogenesis of plastids, and maintains the function of the photosynthetic machinery. Several studies have indicated that the knockdown of MGDG synthase results in membrane lipid remodeling, albino seedlings, and changes in photosynthetic performance. However, the effects of MGDG synthase (MGD) inhibitors on lipids in macroalgae have not yet been clarified. Here, we characterized the effects of MGD inhibitors (ortho-phenanthroline and N-ethylmaleimide) on the composition of the fatty acids observed in MGDG and digalactosyldiacylglycerol (DGDG) in Gracilariopsis lemaneiformis using electrospray ionization-mass spectrometry. The most abundant MGDG species contained 16:0/18:1 (sn-1/sn-2) fatty acids, and the most dominant DGDG species contained 20:5/16:0 (sn-1/sn-2) fatty acids. Measurements of photosynthetic pigments and photosynthetic parameters revealed that photosynthesis of G. lemaneiformis was impaired. Principal component analysis and Spearman's correlation analysis revealed interactions between specific MGDG structural composition patterns and key metabolites involved in photosynthesis, indicating that 20:4/16:0 (sn-1/sn-2) MGDG and 16:0/18:1 (sn-1/sn-2) MGDG affect the structure and function of phycobilisomes and thus the color of G. lemaneiformis. Three genes (GlMGD1, GlMGD2, and GlMGD3) were cloned and identified. The addition of N-ethylmaleimide to G. lemaneiformis did not affect the abundance of GlMGD mRNA, and the abundance of transcripts was significantly decreased by ortho-phenanthroline.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Etilmaleimida/metabolismo , Lipídeos de Membrana/metabolismo , Ácidos Graxos/metabolismo
2.
Food Chem ; 419: 135979, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030206

RESUMO

Nanocarriers can improve the dispersibility of hydrophobic bioactive compounds and potentially improve the texture of liquid food formulations. Here, nanotubes (NTs) with a high aspect ratio formed by self-assembly of peptides partially hydrolyzed from α-lactalbumin (α-lac) were used to deliver soy isoflavones (IFs) and modify soy milk texture. IFs encapsulated by nanotube (NT/IFs) via hydrophobic interactions, which had improved dispersibility, with a maximum loading efficiency of 4%. The rheological characterization showed that the nanotubes enhanced the viscoelastic property and long term-stability of soy milk. About 80% of the NT/IFs in soy milk survived simulated in in vitro gastric digestion promoting the release of IFs in the intestinal phase. Overall, this work demonstrated that α-lac nanotubes may be a multi-functional carrier system for hydrophobic compounds providing beneficial changes to functional food texture.


Assuntos
Isoflavonas , Leite de Soja , Alimento Funcional , Isoflavonas/análise , Cetonas , Lactalbumina , Leite de Soja/química , Nanotubos/química
3.
Yi Chuan ; 45(3): 237-249, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36927650

RESUMO

Weighted gene co-expression network analysis (WGCNA) is a method for analysing gene expression patterns across multiple samples, clustering genes with similar expression patterns and identifying key genes associated with specific traits or phenotypes. In this study, we investigated the effects of fucoxanthin accumulation in Phaeodactylum tricornutum in response to abiotic stresses of phosphorus deficiency, red light, and yellow light using transcriptome sequencing and weighted gene co-expression network analysis. The results showed that compared to the control, the fucoxanthin content of P. tricornutum was significantly increased after phosphorus deficiency and red light treatment (P<0.05), but significantly decreased after yellow light treatment (P<0.05). A weighted gene co-expression network was constructed using 10,392 genes obtained from transcriptome sequencing, and ß=18 (R2>0.8) was chosen as a soft threshold in order to ensure a scale-free network. A total of 10 co-expression modules were identified by correlation analysis of fucoxanthin content, with the purple module positively correlated with fucoxanthin content (r=0.9, P=1E-200), and 9 key genes were identified, including five genes in the fucoxanthin biosynthesis pathway (DXR, PSY, PDS1, ZEP2, VDL2) and 4 transcription factors (bHLH5, HOX2, CCHH13, HSF1b). Further qRT-PCR confirmed that key genes were more highly expressed in the phosphorus deficiency treatment and linear regression analysis showed that the relative gene expressions were all highly correlated with the transcriptome data. The results of this study provide a basis for further investigation of the complex regulatory mechanisms of fucoxanthin in P. tricornutum.


Assuntos
Perfilação da Expressão Gênica , Xantofilas , Transcriptoma
4.
Biomaterials ; 294: 121995, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36641813

RESUMO

Nanocarriers have become an effective strategy to overcome epithelial absorption barriers. During the absorption process, the endocytosis mechanisms, cell internalization pathways, and transport efficiency of nanocarriers are greatly impacted by their physical properties. To understand the relationship between physical properties of nanocarriers and their abilities overcoming multiple absorption barriers, nanocarriers with variable physical properties were prepared via self-assembly of hydrolyzed α-lactalbumin peptide fragments. The impacts of size, shape, and rigidity of nanocarriers on epithelial cells endocytosis mechanisms, internalization pathways, transport efficiency, and bioavailability were studied systematically. The results showed that nanospheres were mainly internalized via clathrin-mediated endocytosis, which was then locked in lysosomes and degraded enzymatically in cytoplasm. While macropinocytosis was the primary pathway of nanotubes and transported to the endoplasmic reticulum and Golgi apparatus, resulting in a high drug concentration and sustained release in cytoplasm. Besides, nanotubes can overcome the multi-drug resistance by inhibiting the P-glycoprotein efflux. Furthermore, nanotubes can open intercellular tight-junctions instantaneously and reversibly, which promotes transport into blood circulation. The aqueous solubility of hydrophobic bioactive mangiferin (Mgf) was improved by nanocarriers. Most importantly, the bioavailability of Mgf was the highest for cross-linked short nanotube (CSNT) which outperformed free Mgf and other formulations by in vivo pharmacokinetic studies. Finally, Mgf-loaded CSNT showed an excellent therapeutic efficiency in vivo for the intervention of streptozotocin-induced diabetes. These results indicate that cross-linked α-lactalbumin nanotubes could be an effective nanocarrier delivery system for improving the epithelium cellular absorption and bioavailability of hydrophobic bioactive compounds.


Assuntos
Portadores de Fármacos , Nanopartículas , Transporte Biológico , Portadores de Fármacos/química , Células Epiteliais/metabolismo , Lactalbumina/metabolismo , Nanopartículas/química , Espaço Intracelular/metabolismo , Boca/metabolismo
5.
Angew Chem Int Ed Engl ; 62(6): e202214379, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484777

RESUMO

Orsellinic acid (OA) derivatives are produced by filamentous fungi using nonreducing polyketide synthases (nrPKSs). The chain-releasing thioesterase (TE) domains of such nrPKSs were proposed to also catalyze dimerization to yield didepsides, such as lecanoric acid. Here, we use combinatorial domain exchanges, domain dissections and reconstitutions to reveal that the TE domain of the lecanoric acid synthase Preu6 of Preussia isomera must collaborate with the starter acyl transferase (SAT) domain from the same nrPKS. We show that artificial SAT-TE fusion proteins are highly effective catalysts and reprogram the ketide homologation chassis to form didepsides. We also demonstrate that dissected SAT and TE domains of Preu6 physically interact, and SAT and TE domains of OA-synthesizing nrPKSs may co-evolve. Our work highlights an unexpected domain-domain interaction in nrPKSs that must be considered for the combinatorial biosynthesis of unnatural didepsides, depsidones, and diphenyl ethers.


Assuntos
Ascomicetos , Policetídeo Sintases , Policetídeo Sintases/metabolismo , Aciltransferases , Ascomicetos/metabolismo
6.
Mar Drugs ; 22(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276645

RESUMO

Fucoxanthin, a vital secondary metabolite produced by marine diatoms, has great economic value and research potential. However, its popularization and application have been greatly restricted due to its low content, difficult extraction, and high production cost. Methyl jasmonic acid (MeJA) exerts similar inductive hormones in the growth and development as well as metabolic processes of plants. In Phaeodactylum tricornutum (P. tricornutum), MeJA treatment can increase fucoxanthin content. In this study, the effects of different concentrations of MeJA on the cell growth and the fucoxanthin content of P. tricornutum were explored. Meanwhile, this study used high-throughput sequencing technology for transcriptome sequencing of P. tricornutum and subsequently performed differential gene expression analysis, gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and weighted gene co-expression network analysis (WGCNA) for screening the hub genes for the promotion of fucoxanthin synthesis with MeJA-treated P. tricornutum. On this basis, the functions of the hub genes for the promotion of fucoxanthin synthesis with MeJA-treated P. tricornutum were further analyzed. The results revealed that the carotenoid synthesis-related genes PHATRDRAFT_54800 and PHATRDRAFT_20677 were the hub genes for the promotion of fucoxanthin synthesis with MeJA-treated P. tricornutum. PHATRDRAFT_54800 may be a carotenoid isomerase, while PHATRDRAFT_20677 may be involved in the MeJA-stimulated synthesis of fucoxanthin by exerting the role of SDR family NAD(P)-dependent oxidoreductases.


Assuntos
Ciclopentanos , Diatomáceas , Oxilipinas , Diatomáceas/metabolismo , Xantofilas/farmacologia , Xantofilas/metabolismo , Carotenoides/metabolismo
7.
Food Funct ; 13(23): 12258-12267, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36342441

RESUMO

Capsaicin (Cap) is a promising bioactive compound having many health-promoting benefits. However, it is difficult to be applied in food due to its poor aqueous solubility, low stability and bioavailability. Besides, its strong spicy taste and irritation to the gastrointestinal tract further limit the application of Cap in food. To solve this problem, Cap was loaded into a self-assembled nanocarrier formed by partial hydrolysis of α-lactalbumin (α-lac). The Cap was successfully loaded into the 21.2 nm micelles with a loading capacity of 123.4 ± 6.1 mg g-1. The aqueous solubility was greatly improved. Besides, nanomicelles also showed intestinal responsive release behavior. The in vivo bioavailability of Cap was improved by nanomicelles for 3.1 times. The Cap loaded nanomicelles in the milk system showed good colloidal stability compared to solely Cap in milk. Therefore, the Cap loaded nanocarriers were added into the de-fatted milk to prepare de-fatted cheese with an acceptable spicy flavor. The nanocarriers were clearly captured in the cheese casein network as confirmed by confocal microscopy. The sensory evaluation results showed the spicy taste of capsaicin was reduced in the nanomicelle system and further reduced in the nanomicelle-cheese systems. We postulated that it might be due to the nanomicelles reducing the contact of capsaicin with sensory neurons in the tongue thus masking the spicy taste. The cheese casein network structure further masked their contact. The above results indicated that Cap embedding via α-lac nanocarriers was feasible for masking their spicy taste and applying Cap to food systems such as milk and cheese.


Assuntos
Queijo , Queijo/análise , Micelas , Lactalbumina , Paladar , Capsaicina , Caseínas
8.
Front Oncol ; 12: 917897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248974

RESUMO

Pancreatic cancer is the 7th leading cause of cancer death worldwide, and its incidence and mortality rate have been on the rise in recent years in Western developed countries. The specificity of the disease and the lack of appropriate treatments have resulted in a 5-year overall survival rate of only 9%. In this study, we conducted a study based on the TCGA database and GEO database and analyzed using the energy metabolism gene set to establish a prognostic model with the least absolute shrinkage and selection operator to identify 7-genes prognostic signature, and the gene expression was verified by Real-time PCR. The model was validated using a risk score calculation, and the OS rates of the 7 genes were analyzed using one-way Cox regression. The prognostic relationship between vesicle-associated membrane protein 2 (VAMP2) and pancreatic cancer patients was analyzed by OS and progression-free survival, and the prognosis was found to be significantly worse in the high-expression group. A Nomogram showed that VAMP2 was an independent prognostic factor in pancreatic cancer. Gene set enrichment analysis showed that VAMP2 upregulation was enriched in pathways associated with immune response and that VAMP2 downregulation was enriched in metabolism-related pathways. The association of VAMP2 with immune cell infiltration was analyzed for the enrichment results, and VAMP2 was found to be positively associated with all 6 immune cells. The results of this study suggest that VAMP2 is an independent prognostic factor associated with energy metabolism in pancreatic cancer and may be involved in the immune response.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36078344

RESUMO

Geochemical characteristics of aeolian sand are beneficial for understanding sand dune formation and evolution. Few studies in the Dinggye area, Southern Tibet, have focused on the geochemical characteristics of aeolian sand. Thus, we present new geochemical data that provide insights into the geochemical characteristics and environmental implications of aeolian sands in the Dinggye area. The results show that mobile dunes, climbing sand sheets, and nebkhas show heterogeneity in elemental concentrations and UCC-normalized distribution; MgO, TiO2, Ni, Pb, and Nb are higher in mobile dunes; SiO2, CaO, K2O, Na2O, P2O5, V, Cr, Co, Cu, Ba, and Ce are higher in climbing sand sheets; and Al2O3, Fe2O3, La, Zn, As, Sr, Y, Zr, Rb, and Ga are higher in nebkhas. Principal component analysis (PCA) and correlation analysis indicate that the main factor affecting elemental content is grain size sorting, followed by provenance, while chemical weathering and regional precipitation are less influential. The CIA and A-CN-K triangle indicate that the different dune types are at a lower chemical weathering stage, with plagioclase weathering and decomposition first. The combination of grain size characteristics, elemental ratios, multidimensional scale (MDS), PCA, and geomorphological conditions suggest that the flood plain and the lakeshore are the main sand sources of aeolian sands in the Dinggye area.


Assuntos
Areia , Dióxido de Silício , Monitoramento Ambiental , Inundações , Tibet
10.
J Fish Biol ; 101(3): 573-583, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35653197

RESUMO

Tumour necrosis factor (TNF) receptor-associated factor (TRAF) is a receptor protein that has important functions in the immune system. Nonetheless, there have been few reports of traf genes in teleost fishes. The present study aimed to identify the traf genes from the genomic information of yellow catfish (Pelteobagrus fulvidraco). Eight traf genes were identified and named, which are distributed on different chromosomes but have similar conserved protein domains. Phylogenetic and syntenic analyses demonstrated conservation of traf genes during evolution. In addition, yellow catfish has the relatively rare traf1 and traf5 genes. Gene structure and motif analysis revealed the homology and distribution diversity of the traf genes. Quantitative real-time reverse transcription PCR was used to study the expression patterns of traf genes in healthy fish tissues and after infection by Aeromonas hydrophila. The results demonstrated significant changes in traf gene expression, indicating a potential role in innate immunity.


Assuntos
Peixes-Gato , Doenças dos Peixes , Animais , Peixes-Gato/genética , Peixes-Gato/metabolismo , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Filogenia
11.
J Fish Biol ; 101(3): 699-710, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35751135

RESUMO

As serine/threonine protein kinases, mitogen-activated protein kinases (MAPK) take part in cellular metabolism. This work found 14 MAPK genes in the yellow catfish (Pelteobagrus fulviadraco) genome and evaluated their taxonomy, conserved domains and evolutionary linkages for a better understanding of the MAPK gene family's evolutionary relationship and antibacterial immune response. The findings revealed that several MAPK genes are activated in response to immunological and inflammatory responses. Collinearity research revealed that in yellow catfish and zebrafish, there are six pairs of highly similar MAPK genes, indicating that these genes have been more conserved throughout evolution. The MAPK gene quantification findings revealed that JNK1a, JNK1b, p38delta and p38alpha b expression levels were considerably upregulated, indicating that they act in fish innate immunity. The findings implied that MAPK genes may involve in defence against detrimental microbe in yellow catfish, which will help researchers better understand how MAPK genes work in the innate immune system.


Assuntos
Peixes-Gato , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/fisiologia , Animais , Peixes-Gato/genética , Peixes-Gato/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Imunidade Inata/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Peixe-Zebra/genética
12.
Front Microbiol ; 13: 819086, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602042

RESUMO

Fungal polyketides (PKs) are one of the largest families of structurally diverse bioactive natural products biosynthesized by multidomain megasynthases, in which thioesterase (TE) domains act as nonequivalent decision gates determining both the shape and the yield of the polyketide intermediate. The endophytic fungus Preussia isomera XL-1326 was discovered to have an excellent capacity for secreting diverse bioactive PKs, i.e., the hot enantiomers (±)-preuisolactone A with antibacterial activity, the single-spiro minimoidione B with α-glucosidase inhibition activity, and the uncommon heptaketide setosol with antifungal activity, which drive us to illustrate how the unique PKs are biosynthesized. In this study, we first reported the genome sequence information of P. isomera. Based on genome mining, we discovered nine transcriptionally active genes encoding polyketide synthases (PKSs), Preu1-Preu9, of which those of Preu3, Preu4, and Preu6 were cloned and functionally characterized due to possessing complete sets of synthetic and release domains. Through heterologous expression in Saccharomyces cerevisiae, Preu3 and Preu6 could release high yields of orsellinic acid (OA) derivatives [3-methylorsellinic acid (3-MOA) and lecanoric acid, respectively]. Correspondingly, we found that Preu3 and Preu6 were clustered into OA derivative synthase groups by phylogenetic analysis. Next, with TE domain swapping, we constructed a novel "non-native" PKS, Preu6-TEPreu3, which shared a very low identity with OA synthase, OrsA, from Aspergillus nidulans but could produce a large amount of OA. In addition, with the use of Preu6-TEPreu3, we synthesized methyl 3-methylorsellinate (synthetic oak moss of great economic value) from 3-MOA as the substrate, and interestingly, 3-MOA exhibited remarkable antibacterial activities, while methyl 3-methylorsellinate displayed broad-spectrum antifungal activity. Taken together, we identified two novel PKSs to biosynthesize 3-MOA and lecanoric acid, respectively, with information on such kinds of PKSs rarely reported, and constructed one novel "non-native" PKS to largely biosynthesize OA. This work is our first step to explore the biosynthesis of the PKs in P. isomera, and it also provides a new platform for high-level environment-friendly production of OA derivatives and the development of new antimicrobial agents.

13.
Front Plant Sci ; 13: 829447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222487

RESUMO

Plant U-box (PUB) proteins are ubiquitin ligases (E3) involved in multiple biological processes and in response to plant stress. However, the various aspects of the genome and the differences in functions between the U-box E3 (UBE3) ubiquitin ligases remain quite obscure in Salvia miltiorrhiza. The 60 UBE3 genes in the S. miltiorrhiza genome were recognized in the present study. The phylogenetic analysis, gene structure, motifs, promoters, and physical and chemical properties of the genes were also examined. Based on the phylogenetic relationship, the 60 UBE3 genes were categorized under six different groups. The U-box domain was highly conserved across the family of UBE3 genes. Analysis of the cis-acting element revealed that the UBE3 genes might play an important role in a variety of biological processes, including a reaction to the abscisic acid (ABA) treatment. To investigate this hypothesis, an ABA treatment was developed for the hairy roots of S. miltiorrhiza. Thirteen out of the UBE3 genes significantly increased after the ABA treatment. The co-expression network revealed that nine UBE3 genes might be associated with phenolic acids or tanshinone biosynthesis. The findings of the present study brought fresh and new understanding to the participation of the UBE3 gene family in plants, specifically in their biological responses mediated by the ABA. In S. miltiorrhiza, this gene family may be crucial during the ABA treatment. Significantly, the results of this study contribute novel information to the understanding of the ubiquitin ligase gene and its role in plant growth.

14.
Bioprocess Biosyst Eng ; 44(8): 1769-1779, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33844074

RESUMO

Currently, the market price of fucoxanthin-based drugs remains high primarily because, on one hand, the main natural source of fucoxanthin, Phaeodactylum tricornutum (P. tricornutum), is extremely low in endogenous fucoxanthin, while, on the other hand, fucoxanthin mass production has proved to be very challenging. In this study, we demonstrated the feasibility of increasing fucoxanthin bioaccumulation in P. tricornutum by promoting photosynthetic activity of this diatom. Specifically, this study investigated the effects of different concentrations of the photosynthetic induction factor (PIF) on fucoxanthin content and biosynthesis, on chlorophyll fluorescence characteristics, and on the expression of photosynthesis-related genes in P. tricornutum. The results showed that the optimal PIF concentration was 1 µg L-1, while optimal time was 48 h, with the effect decreasing at 72 h. Fucoxanthin content increased by 44.2% compared to that of the control group in 48 h. Correlation analysis showed a significant positive correlation between fucoxanthin content and the actual photosynthetic yield of PS II (r = 0.949, P < 0.01). The total amount of energy actually used in photosystem II (PS II) by photosynthesis may be used as the main components affecting the biosynthesis of fucoxanthin in P. tricornutum. In addition, we found that using PIF to promote photosynthesis in P. tricornutum effectively increased the growth rate and bioaccumulation of fucoxanthin to an economically advantageous level, thereby providing a novel strategy for the commercial production of fucoxanthin.


Assuntos
Biotecnologia/métodos , Diatomáceas/metabolismo , Microbiologia Industrial/métodos , Xantofilas/química , Carotenoides/química , Clorofila/química , Luz , Fotossíntese , Complexo de Proteína do Fotossistema II , Temperatura , Fatores de Tempo
15.
IEEE Access ; 7: 47479-47493, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32855899

RESUMO

Mobile devices are becoming ever more popular for streaming videos, which account for the majority of all data traffic on the internet. Memory is a critical component in mobile video processing systems, increasingly dominating power consumption. Today, memory designers are still focusing on hardware-level power optimization techniques, which usually come with significant implementation cost (e.g., silicon area overhead or performance penalty). In this paper, we propose a video content-aware memory technique for power-quality trade-off from viewer's perspectives. Based on the influence of video macroblock characteristics on the viewer's experience, we develop two simple and effective models - decision tree and logistic regression - to enable hardware adaptation. We have also implemented a novel viewer-aware bit-truncation technique which minimizes the impact on the viewer's experience, while introducing energy-quality adaptation to the video storage.

16.
J Exp Bot ; 68(15): 4357-4367, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28922766

RESUMO

Viral infection affects the pattern of plant miRNA expression. It has been presumed that reduction of miR171 and several other miRNAs influences viral symptoms in plants. We here experimentally demonstrate the association of osa-miR171b with rice stripe virus (RSV) symptoms in rice. Inhibition of osa-miR171b caused stunting with reduced chlorophyll content in leaves similar to viral symptoms. Overexpression of osa-miR171b by an artificial miRNA extended vegetative growth and enhanced chlorophyll accumulation in leaves. Tillers were thicker, and panicles were longer with more spikelets in plants overexpressing osa-miR171b than in controls, but there were no differences in tiller numbers. Targets of osa-miR171b, OsSCL6-IIa, OsSCL6-IIb, and OsSCL6-IIc, were respectively up- and down-regulated in plants where osa-miR171b was inhibited or overexpressed. In plants overexpressing osa-miR171b, five positive regulators for heading development, Ehd1, Ehd2, Ehd3, Ehd4, and Hd3a were up-regulated, while the negative regulator Ghd7 was down-regulated. Plants overexpressing osa-miR171b were less susceptible to RSV and virus symptoms were attenuated. Taken together, the results reveal that a reduction of osa-miR171b in RSV-infected rice contributes to RSV symptoms, and provide more insight into the roles of osa-miR171b in rice.


Assuntos
MicroRNAs/genética , Oryza/genética , Oryza/virologia , Doenças das Plantas/virologia , RNA de Plantas/genética , Tenuivirus/fisiologia , MicroRNAs/metabolismo , Oryza/metabolismo , RNA de Plantas/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-28851534

RESUMO

Triplicate groups of juvenile yellow catfish Pelteobagrus fulvidraco were exposed to three levels of DEHP (0, 0.1 and 0.5mgL-1) for 56days. Fish survival (100%) was not affected by different levels of ambient DEHP. Final body weight, weight gain, specific growth rate and feed intake of fish exposed to 0.5mgL-1 DEHP were the highest. On the contrary, hepatosomatic index of fish exposed to 0.1 and 0.5mgL-1 DEHP were the lowest. Serum total protein, glutamic-pyruvic transaminase, glutamic-oxaloacetic transaminase, glucose and triglycerides increased with the increasing concentrations of DEHP exposure. Superoxide dismutase and glutathione peroxidase activities of fish exposed to 0.5mgL-1 DEHP were the lowest, but malondialdehyde contents of fish exposed to 0.1 and 0.5mgL-1 DEHP were higher than that of control fish. Phagocytic indices of the control group were the highest. After being intraperitoneally injected with Aeromonas hydrophila, fish in the control group had the highest expression of toll like receptor 5, and the expression of myeloid differentiation factor 88 of fish exposed to 0.5mgL-1 DEHP was the lowest. This study indicates that DEHP exerts its toxic effects by interfering with hepatic metabolism, inducing ROS generation and malondialdehyde accumulation, leading to blood deterioration and immunosuppression.


Assuntos
Aeromonas hydrophila , Antioxidantes/metabolismo , Peixes-Gato/crescimento & desenvolvimento , Dietilexilftalato/toxicidade , Imunidade Inata/efeitos dos fármacos , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Poluentes Químicos da Água/toxicidade
18.
Yi Chuan ; 39(2): 156-165, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28242602

RESUMO

ß-carotenoid hydroxylase (CHYB) is an important rate-limiting enzyme in the biosynthesis of plant carotenoid. In this study, chyb1 and chyb2, two gene families in Dunaliella viridis were obtained by RNA-seq. The fragment of promoters of CHYB family genes, 1 080 bp for chyb1 (GenBank No. KY012338) and 1 155 bp for chyb2 (GenBank No. KY012339) were cloned by the Genome Walking Technology, respectively. Cis-acting elements of two promoters were analyzed by Plantcare soft. The results show that the chyb1 gene promoter contains more cis-acting elements in responses to abiotic stresses, such as methyl jasmonate, arachidonic acid, acetylsalicylic acid, and so on. On the other hand, the chyb2 promoter contains more cis-acting elements in response to light stress. qRT-PCR results show that the mRNA expression levels of CHYBs are modulated by their promoters, and different CHYB gene families response to distinct stresses.


Assuntos
Carotenoides/biossíntese , Clorófitas/enzimologia , Oxigenases de Função Mista/genética , Clorófitas/genética , Oxigenases de Função Mista/química , Regiões Promotoras Genéticas , Estresse Fisiológico
19.
Yi Chuan ; 37(8): 828-36, 2015 08.
Artigo em Chinês | MEDLINE | ID: mdl-26266786

RESUMO

In order to understand the gene information, function, haloduric pathway (glycerolipid metabolism) and related key genes for Dunaliella viridis, we used Illumina HiSeqTM 2000 high-throughput sequencing technology to sequence its transcriptome. Trinity soft was used to assemble the data to form transcripts. Based on the Clusters of Orthologous Groups (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG ) databases, we carried out functional annotation and classification, pathway annotation, and the opening reading fragment (ORF) sequence prediction of transcripts. The key genes in the glycerolipid metabolism were analyzed. The results suggested that 81,593 transcripts were found, and 77,117 ORF sequences were predicted, accounting for 94.50% of all transcripts. COG classification results showed that 16,569 transcripts were assigned to 24 categories. GO classification annotated 76,436 transcripts. The number of transcripts for biologcial processes was 30,678, accounting for 40.14% of all transcripts. KEGG pathway analysis showed that 26,428 transcripts were annotated to 317 pathways, and 131 pathways were related to metabolism, accounting for 41.32% of all annotated pathways. Only one transcript was annotated as coding the key enzyme dihydroxyacetone kinase involved in the glycerolipid pathway. This enzyme could be related to glycerol biosynthesis under salt stress. This study further improved the gene information and laid the foundation of metabolic pathway research for Dunaliella viridis.


Assuntos
Clorófitas/genética , Transcriptoma , Clorófitas/metabolismo , Glicerol/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta
20.
Dongwuxue Yanjiu ; 34(4): 399-405, 2013 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-23913891

RESUMO

The NFκB inhibitor (IκBα) is an integral part of NFκB/IκB signaling pathways, which plays roles in a variety of immune responses, such as bacterial infection resistance. By interacting with nuclear transcription factor NFκB, IκBα controls a variety of biological immune gene expressions. In this study, full-length cDNA (1341 bp) of the NFκB inhibitor IκBα (PaIκBα, GenBank Accession No. JN801027) of Plecoglossus altivelis was obtained by RACE and PCR, and included a 5' untranslated region (UTR) (64 bp), a 3' untranslated region (UTR) (341 bp) and an open reading frame (ORF) (936 bp) encoding a polypeptide of 311 amino acids. PaIκBα had high homology with other IκBαs, containing a conserved ankyrin repeat domain, which was required for interacting with NFκB, a PEST sequence in the C-terminus and a signal responsive domain in the N-terminus. The deduced amino acid sequence of PaIκBα shared 95% homology with Osmerus mordax, and 76%, 75%, 70%, and 68% homology with Salmo salar, Oncorhynchus mykiss, Nile tilapia, and Siniperca chuatsi, respectively. Phylogenetic analysis revealed that IκBα of ayu and Osmerus mordax, Salmo salar, Oncorhynchus mykiss, Nile tilapia, and Siniperca chuatsi were in the same phylogenetic tree. RT-PCR analysis showed that PaIκBα mRNA expression was highest in the liver, kidney, intestine, and gills, then followed by the spleen, brain and muscle, and was lowly expressed in the heart. Likewise, after Aeromonas hydrophila infection, the mRNA level of ayu PaIκBα in the liver was also up-regulated.


Assuntos
Clonagem Molecular , Proteínas de Peixes/genética , Expressão Gênica , Proteínas I-kappa B/genética , Osmeriformes/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/metabolismo , Peixes/classificação , Peixes/genética , Proteínas I-kappa B/metabolismo , Dados de Sequência Molecular , Inibidor de NF-kappaB alfa , Osmeriformes/classificação , Osmeriformes/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA