Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998380

RESUMO

Ultra High-Performance Concrete (UHPC) is a cement-based composite material with great strength and durability. Fibers can effectively increase the ductility, strength, and fracture energy of UHPC. This work describes the impacts of individual or hybrid doping of basalt fiber (BF) and steel fiber (SF) on the mechanical properties and microstructure of UHPC. We found that under individual doping, the effect of BF on fluidity was stronger than that of SF. Moreover, the compressive, flexural, and splitting tensile strength of UHPC first increased and then decreased with increasing BF dosage. The optimal dosage of BF was 1%. At a low content of fiber, UHPC reinforced by BF demonstrated greater flexural strength than that reinforced by SF. SF significantly improved the toughness of UHPC. However, a high SF dosage did not increase the strength of UHPC and reduced the splitting tensile strength. Secondly, under hybrid doping, BF was partially substituted for SF to improve the mechanical properties of hybrid fiber UHPC. Consequently, when the BF replacement rate increased, the compressive strength of UHPC gradually decreased; on the other hand, there was an initial increase in the fracture energy, splitting tensile strength, and flexural strength. The ideal mixture was 0.5% BF + 1.5% SF. The fluidity of UHPC with 1.5% BF + 0.5% SF became the lowest with a constant total volume of 2%. The microstructure of hydration products in the hybrid fiber UHPC became denser, whereas the interface of the fiber matrix improved.

2.
Materials (Basel) ; 16(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37297092

RESUMO

Traditional silicate cement materials produce a large amount of CO2 during production, making it urgent to seek alternatives. Alkali-activated slag cement is a good substitute, as its production process has low carbon emissions and energy consumption, and it can comprehensively utilize various types of industrial waste residue while possessing superior physical and chemical properties. However, the shrinkage of alkali-activated concrete can be larger than that of traditional silicate concrete. To address this issue, the present study utilized slag powder as the raw material, sodium silicate (water glass) as the alkaline activator, and incorporated fly ash and fine sand to study the dry shrinkage and autogenous shrinkage values of alkali cementitious material under different content. Furthermore, combined with the change trend of pore structure, the impact of their content on the drying shrinkage and autogenous shrinkage of alkali-activated slag cement was discussed. Based on the author's previous research, it was found that by sacrificing a certain mechanical strength, adding fly ash and fine sand can effectively reduce the drying shrinkage and autogenous shrinkage values of alkali-activated slag cement. The higher the content, the greater the strength loss of the material and the lower the shrinkage value. When the fly ash content was 60%, the drying shrinkage and autogenous shrinkage of the alkali-activated slag cement mortar specimens decreased by about 30% and 24%, respectively. When the fine sand content was 40%, the drying shrinkage and autogenous shrinkage of the alkali-activated slag cement mortar specimens decreased by about 14% and 4%, respectively.

3.
Materials (Basel) ; 16(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37297300

RESUMO

The advantage of a prefabricated building is its ease of construction. Concrete is one of the essential components of prefabricated buildings. A large amount of waste concrete from prefabricated buildings will be produced during the demolition of construction waste. In this paper, foamed lightweight soil is primarily made of concrete waste, a chemical activator, a foaming agent, and a foam stabilizer. The effect of the foam admixture on the wet bulk density, fluidity, dry density, water absorption, and unconfined compressive strength of the material was investigated. Microstructure and composition were measured by SEM and FTIR. The results demonstrated that the wet bulk density is 912.87 kg/m3, the fluidity is 174 mm, the water absorption is 23.16%, and the strength is 1.53 MPa, which can meet the requirements of light soil for highway embankment. When the foam content ranges from 55% to 70%, the foam proportion is increased and the material's wet bulk density is decreased. Excessive foaming also increases the number of open pores, which reduces water absorption. At a higher foam content, there are fewer slurry components and lower strength. This demonstrates that recycled concrete powder did not participate in the reaction while acting as a skeleton in the cementitious material with a micro-aggregate effect. Slag and fly ash reacted with alkali activators and formed C-N-S(A)-H gels to provide strength. The obtained material is a construction material that can be constructed quickly and reduce post-construction settlement.

4.
Materials (Basel) ; 16(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049074

RESUMO

A large amount of silt may be produced in river and lake regulation. It not only occupies land but also pollutes the environment. Therefore, it is urgent to seek effective disposal and utilization methods. Based on the problems of poor stability of stabilized soil and its tendency to soften easily in water, as well as its low strength with low curing agent dosage, this paper proposes a method to improve stabilized soil's solidification effect by adding materials such as cement, lime, fly ash, triethanolamine, sodium hydroxide, sodium silicate, etc., while mixing different grain diameters and quantities of building waste materials and ordinary sand. Using construction waste and ordinary sand as a comparative test, the curing mechanism of construction waste debris on the mechanical properties, permeability, and microstructure of solidified sludge was studied through unconfined compression tests, dry and wet cycle tests, permeability tests, and micro-structure tests such as XRD, MIP, and SEM. The test results show that the strength increases 8.5%~72.1% by adding building waste materials, and it grew with the increase in particle size and amount. It reduced the content of large pore size of solidified sediment and optimized the internal pore structure. At the same time, it formed a new structure filled by rigid skeleton material. Thus, it improved its unit section stress, built up the curing effect and water stability. The findings of this study can be used to modify solidified silt to improve stability and compaction characteristics.

5.
Materials (Basel) ; 15(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36363322

RESUMO

The inferior property is usually one of the major problems of recycled coarse aggregate (RCA), and the utilization of the RCA is limited. Strengthening the RCA is being widely explored. Immersing the RCA in the cement-based slurry is an effective approach. However, lots of slurry and time are required, and it is difficult to integrate the immersing method into the production line of the RCA. In this paper, a circular spraying method was proposed to treat the RCA using cement-based slurry. The immersing method was also conducted to verify the feasibility of the spraying method. The crushing value (CV), 24 h water absorption (WA), apparent density (AD) and dynamic water absorption (DWA) were tested, and the micro-morphology was also observed to explore the strengthening mechanism. Results showed that the CV and the WA decreased by up to 30.0% and 14.3% when the spraying method was used. The AD was slightly influenced by the cement-based slurry regardless of the treatment method. Considering the CV, WA and AD, the comprehensive grade of the RCA could be enhanced from III to II by using the spraying method. It was worth noting that the effects of the spraying method and the immersing method were basically equivalent. When the spraying method was adopted, only about 1 min and a small amount of slurry (about 5% of the RCA mass) were required to treat the RCA.

6.
Materials (Basel) ; 12(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614521

RESUMO

Fly ash belite cement is a kind of low-carbon cement prepared by a two-step process involving hydrothermal synthesis and low-temperature calcination. Pozzolanic reaction pastes, as the precursors of fly ash belite cement prepared by hydrothermal synthesis, are affected mainly by reaction temperature, time, ratios of the mass of fly ash/lime (FA/CA), and the dosage of Na2O. The absorbance rate of CaO with reaction time was tested for all samples, and the reaction kinetic model and parameters of the granule-hydrothermal synthesis method were discussed. A kinetic model for the hydrothermal synthesis in the presence of Na2O was proposed based on the Kondo's modified Jander equation and Arrhenius equation. The activation energy (Ea) of the process was determined to be 67.76 kJ/mol. In addition, with an increasing dosage of Na2O, the pre-exponential factor A of the Arrhenius equation increased. However, the hydrothermal reaction degree was accurately predicted using the kinetic model characterized by the absorption rate of CaO. The results indicated that Na2O, as an alkali activator, facilitated the diffusion of Ca2+ firstly, then partly dissolved the amorphous phase in the mixtures and, finally, accelerated the formation of poorly crystallized hydrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA