Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000240

RESUMO

GAI-RGA-and-SCR (GRAS) transcription factors can regulate many biological processes such as plant growth and development and stress defense, but there are few related studies in sugar beet. Salt stress can seriously affect the yield and quality of sugar beet (Beta vulgaris). Therefore, this study used bioinformatics methods to identify GRAS transcription factors in sugar beet and analyzed their structural characteristics, evolutionary relationships, regulatory networks and salt stress response patterns. A total of 28 BvGRAS genes were identified in the whole genome of sugar beet, and the sequence composition was relatively conservative. According to the topology of the phylogenetic tree, BvGRAS can be divided into nine subfamilies: LISCL, SHR, PAT1, SCR, SCL3, LAS, SCL4/7, HAM and DELLA. Synteny analysis showed that there were two pairs of fragment replication genes in the BvGRAS gene, indicating that gene replication was not the main source of BvGRAS family members. Regulatory network analysis showed that BvGRAS could participate in the regulation of protein interaction, material transport, redox balance, ion homeostasis, osmotic substance accumulation and plant morphological structure to affect the tolerance of sugar beet to salt stress. Under salt stress, BvGRAS and its target genes showed an up-regulated expression trend. Among them, BvGRAS-15, BvGRAS-19, BvGRAS-20, BvGRAS-21, LOC104892636 and LOC104893770 may be the key genes for sugar beet's salt stress response. In this study, the structural characteristics and biological functions of BvGRAS transcription factors were analyzed, which provided data for the further study of the molecular mechanisms of salt stress and molecular breeding of sugar beet.


Assuntos
Beta vulgaris , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estresse Salino , Fatores de Transcrição , Beta vulgaris/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Redes Reguladoras de Genes , Sintenia
2.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232881

RESUMO

As one of the largest transcription factor families in plants, bZIP transcription factors play important regulatory roles in different biological processes, especially in the process of stress response. Salt stress inhibits the growth and yield of sugar beet. However, bZIP-related studies in sugar beet (Beta vulgaris L.) have not been reported. This study aimed to identify the bZIP transcription factors in sugar beet and analyze their biological functions and response patterns to salt stress. Using bioinformatics, 48 BvbZIP genes were identified in the genome of sugar beet, encoding 77 proteins with large structural differences. Collinearity analysis showed that three pairs of BvbZIP genes were fragment replication genes. The BvbZIP genes were grouped according to the phylogenetic tree topology and conserved structures, and the results are consistent with those reported in Arabidopsis. Under salt stress, the expression levels of most BvbZIP genes were decreased, and only eight genes were up-regulated. GO analysis showed that the BvbZIP genes were mainly negatively regulated in stress response. Protein interaction prediction showed that the BvbZIP genes were mainly involved in light signaling and ABA signal transduction, and also played a certain role in stress responses. In this study, the structures and biological functions of the BvbZIP genes were analyzed to provide foundational data for further mechanistic studies and for facilitating the efforts toward the molecular breeding of stress-resilient sugar beet.


Assuntos
Arabidopsis , Beta vulgaris , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Estresse Fisiológico/genética , Açúcares/metabolismo , Fatores de Transcrição/metabolismo
3.
PeerJ ; 10: e13429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35582615

RESUMO

C-repeat binding factors (CBFs) are transcription factors that are known to play important roles in plant cold acclimation. They are highly conserved in most higher plants. Taraxacum kok-saghyz (TKS) is an herb native to China and Kazakhstan and is well-known for its production of rubber silk with industrial and economic value. To understand cold acclimation mechanisms, we conducted a genome-wide discovery of the CBF family genes in TKS and revealed ten CBF genes. A bioinformatic analysis of the CBF genes was carried out to analyze the phylogenetic relationship, protein conservative motifs, protein physicochemical properties, gene structure, promoter cis-acting elements, and the gene expression patterns under cold acclimation and control conditions. It was found that most of these genes were highly responsive at the late stage of cold acclimation, indicating that they play important roles in the cold acclimation processes of TKS. This study provides a theoretical basis for the study of the molecular functions of the CBF gene family in TKS, and a useful guidance for the genetic improvement of the cold tolerance traits of TKS and other plants, including crops.


Assuntos
Taraxacum , Taraxacum/genética , Filogenia , Fatores de Transcrição/genética , Borracha/metabolismo , Aclimatação/genética
4.
Bioelectromagnetics ; 39(2): 98-107, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29251353

RESUMO

A new non-toxic ferromagnetic biological patch (MBP) was designed in this paper. The MBP consisted of two external layers that were made of transparent silicone, and an internal layer that was made of a mixture of pure iron powder and silicon rubber. Finite-element analysis showed that the local inhomogeneous magnetic field (MF) around the MBP was generated when MBP was placed in a uniform MF. The local MF near the MBP varied with the uniform MF and shape of the MBP. Therefore, not only could the accumulation of paramagnetic particles be adjusted by controlling the strength of the uniform MF, but also the distribution of the paramagnetic particles could be improved with the different shape of the MBP. The relationship of the accumulation of paramagnetic particles or cells, magnetic flux density, and fluid velocity were studied through in vitro experiments and theoretical considerations. The accumulation of paramagnetic particles first increased with increment in the magnetic flux density of the uniform MF. But when the magnetic flux density of the uniform MF exceeded a specific value, the magnetic flux density of the MBP reached saturation, causing the accumulation of paramagnetic particles to fall. In addition, the adsorption morphology of magnetic particles or cells could be improved and the uniform distribution of magnetic particles could be achieved by changing the shape of the MBP. Also, MBP may be used as a new implant to attract magnetic drug carrier particles in magnetic drug targeting. Bioelectromagnetics. 39:98-107, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Campos Magnéticos , Imãs , Adsorção , Animais , Imãs/química , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/química
5.
Bioelectromagnetics ; 37(5): 323-30, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27126920

RESUMO

Magnetic targeting is a promising therapeutic strategy for localizing systemically delivered magnetic responsive drugs or cells to target tissue, but excessive aggregation of magnetic particles could result in vascular embolization. To analyze the reason for embolization, the attractive process of magnetic particles in magnetic field (MF) was studied in this paper by analyzing the form of the aggregated paramagnetic particles while the particle suspension flowed through a tube, which served as a model of blood vessels. The effects of magnetic flux density and fluid velocity on the formation of aggregated paramagnetic particles were investigated. The number of large aggregated clusters dramatically increased with increment in the magnetic flux density and decreased with increment in the fluid velocity. The analysis of accumulative process demonstrates the MF around initially attracted particles was focused, which induced the formation of clusters and increased the possibility of embolism. Bioelectromagnetics. 37:323-330, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Campos Magnéticos , Imãs/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA