Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034622

RESUMO

The construction of a close contact interface is key to enhancing the photocatalytic activity in heterojunctions. In the work, the BiOCl/Bi2O2CO3 of sharing [Bi2O2]2+ slabs S-scheme heterojunction was prepared by a HCl in situ etching method. The optimal composite photocatalyst could accomplish sizable productivity of H2O2 to 2562.95 µmol g-1 h-1 under simulated solar irradiation, higher than that of primitive Bi2O2CO3 and BiOCl. Moreover, the synthesized catalysts showed good stability. The band structures of BiOCl and Bi2O2CO3 were determined, confirming the formation of BiOCl/Bi2O2CO3 S-scheme heterojunction The BiOCl/Bi2O2CO3, which obviously improved the separation efficiency of photoinduced carriers and effectively enhanced the redox ability of the photocatalyst. In addition, density functional theory (DFT) calculations were utilized to analyze the electron transfer properties and the constitution of the built-in electric field at the interface of BiOCl and Bi2O2CO3. The photocatalytic reaction process was further researched by electron paramagnetic resonance (EPR), indicating the active species in the photocatalytic production of hydrogen peroxide. Eventually, a feasible S-scheme electron transfer mechanism on the BiOCl/Bi2O2CO3 heterojunction during the photocatalytic H2O2 production process was proposed and discussed. This work provides a reliable strategy for the fine design of the S-scheme heterojunction.

2.
Heliyon ; 10(10): e31532, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38807874

RESUMO

Background: Restoration of blood supply is a desired goal for the treatment of acute ischemic stroke. However, the restoration often leads to cerebral ischemia-reperfusion injury (CIR/I), which greatly increases the risk of non-neural organ damage. In particular, the acute kidney injury might be one of the most common complications. Aims: The study aimed to understand the damage occurred and the potential molecular mechanisms. Methods: The study was explored on the CIR/I rats generated by performing middle cerebral artery occlusion/reperfusion (MCAO/Reperfusion). The rats were evaluated with injury on the brains, followed by the non-neural organs including kidneys, livers, colons and stomachs. They were examined further with histopathological changes, and gene expression alterations by using RT-qPCR of ten aquaporins (Aqps) subtypes including Aqp1~Aqp9 and Aqp11. Furthermore, the Aqps expression profiles were constructed for each organ and analyzed by performing Principle Component Analysis. In addition, immunohistochemistry was explored to look at the protein expression of Aqp1, Aqp2, Aqp3 and Aqp4 in the rat kidneys. Results: There was a prominent down-regulation profile in the MCAO/Reperfusion rat kidneys. The protein expression of Aqp1, Aqp2, Aqp3 and Aqp4 was decreased in the kidneys of the MCAO/Reperfusion rats. We suggested that the kidney was in the highest risk to be damaged following the CIR/I. Down-regulation of Aqp2, Aqp3 and Aqp4 was involved in the acute kidney injury induced by the CIR/I.

3.
Food Chem ; 446: 138817, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401299

RESUMO

Aflatoxin B1 (AFB1) and zearalenone (ZEN) are two mycotoxins that often co-occur in corn. A surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) that can simultaneously detect AFB1 and ZEN in corn samples was developed employing the core-interlayer-satellite magnetic nanocomposites (Fe3O4@PEI/AuMBA@AgMBA) as dual-functional SERS tags. Under the optimal conditions, the detection ranges of AFB1 and ZEN in corn samples were 0.1-10 µg/kg and 4-400 µg/kg, respectively. Moreover, the test results for two mycotoxins in contaminated corn samples employing the suggested SERS-LFIA was in line with those of the HPLC technique. In view of its satisfactory sensitivity, accuracy, precision and short testing time (20 min), the developed system has a promising application prospect in the on-site simultaneous detection of AFB1 and ZEN.


Assuntos
Micotoxinas , Zearalenona , Zearalenona/análise , Aflatoxina B1/análise , Micotoxinas/análise , Magnetismo , Zea mays , Fenômenos Magnéticos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA