RESUMO
A low temperature (LT) is used to delay grain deterioration effectively. In practical applications, a nitrogen-modified atmosphere (N2) is also an effective way of preventing grain pests and delaying grain deterioration. However, there are few studies on grain quality changes using a combination treatment of an LT and N2 during storage. In this study, the storage quality, processing characteristics, and metabolites of rice under conventional storage (CS), LT (20 °C), N2 (95%), and LT+N2 treatments were analyzed for 180 days, under a controlled humidity of 65% ± 2%. The results showed that compared to the CS, LT, and N2 treatments, the LT+N2 treatment had the best effect in retarding the increase in MDA and electrical conductivity and deferring the decrease in CAT activity. In addition, the LT+N2 treatment maintained the color of the rice better and sustained a better processing quality. Non-targeted metabolomics analysis further confirmed that the LT+N2 treatment maintained the vigor of the rice and retarded its spoilage by activating the metabolisms of amino acids, carbohydrates, and flavonoids. These results suggest a favorable practice for preventing storage deterioration and increasing the processing quality for rice storage. They provided new insights into the mechanisms of rice quality changes using the combination treatment of an LT and N2.
RESUMO
Although most cognitive impairments induced by prolonged alcohol consumption tend to improve within the initial months of abstinence, there is evidence suggesting certain cognitive deficits may persist. This study aimed to investigate the impact of aerobic exercise on learning and memory in alcohol use disorder (AUD) mice following a period of abstinence from alcohol. We also sought to assess the levels of monoamine neurotransmitters in the hippocampus. To this end, we established an AUD mouse model through a two-bottle choice (sucrose fading mode and normal mode) and chronic intermittent alcohol vapor (combined with intraperitoneal injection) and randomly allocated mice into exercise groups to undergo treadmill training. Learning and memory abilities were assessed through the Morris water maze test and spontaneous activity was evaluated using the open field test. The levels of dopamine, norepinephrine, serotonin, and brain-derived neurotrophic factor in the hippocampus were quantified using enzyme-linked immunoassay (ELISA) kits. The findings reveal that after cessation of alcohol consumption, learning and memory abilities in AUD mice did not completely return to normal levels. The observed enhancement of cognitive functions in AUD mice through aerobic exercise may be attributed to restoring levels of monoamine neurotransmitters in the hippocampus, boosting brain-derived neurotrophic factor (BDNF) concentrations, and facilitating an increase in hippocampal mass. These results offer empirical evidence to support aerobic exercise as a viable therapeutic strategy to alleviate cognitive deficits associated with AUD.
Assuntos
Alcoolismo , Disfunção Cognitiva , Hipocampo , Condicionamento Físico Animal , Animais , Camundongos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/etiologia , Alcoolismo/metabolismo , Alcoolismo/terapia , Alcoolismo/fisiopatologia , Masculino , Hipocampo/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fator Neurotrófico Derivado do Encéfalo/metabolismo , MemóriaRESUMO
Background: Alterations in the static and dynamic characteristics of spontaneous brain activity have been extensively studied to investigate functional brain changes in migraine without aura (MwoA). However, alterations in concordance among the dynamics of spontaneous brain activity in MwoA remain largely unknown. This study aimed to determine the possibilities of diagnosis based on the concordance indices. Methods: Resting-state functional MRI scans were performed on 32 patients with MwoA and 33 matched healthy controls (HCs) in the first cohort, as well as 36 patients with MwoA and 32 HCs in the validation cohort. The dynamic indices including fractional amplitude of low-frequency fluctuation, regional homogeneity, voxel-mirrored homotopic connectivity, degree centrality and global signal connectivity were analyzed. We calculated the concordance of grey matter volume-wise (across voxels) and voxel-wise (across time windows) to quantify the degree of integration among different functional levels represented by these dynamic indices. Subsequently, the voxel-wise concordance alterations were analyzed as features for multi-voxel pattern analysis (MVPA) utilizing the support vector machine. Results: Compared with that of HCs, patients with MwoA had lower whole-grey matter volume-wise concordance, and the mean value of volume-wise concordance was negatively correlated with the frequency of migraine attacks. The MVPA results revealed that the most discriminative brain regions were the right thalamus, right cerebellar Crus II, left insula, left precentral gyrus, right cuneus, and left inferior occipital gyrus. Conclusions: Concordance alterations in the dynamics of spontaneous brain activity in brain regions could be an important feature in the identification of patients with MwoA.
RESUMO
OBJECTIVE: To investigate the changes in amplitude of low-frequency fluctuation (ALFF) and degree centrality (DC) values before and after acupuncture in young women with non-menstrual migraine without aura (MWoA) through rest blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI). METHODS: Patients with non-menstrual MWoA (Group 1, n = 50) and healthy controls (Group 2, n = 50) were recruited. fMRI was performed in Group 1 at 2 time points: before acupuncture (time point 1, TP1); and after the end of all acupuncture sessions (time point 2, TP2), and performed in Group 2 as a one-time scan. Patients in Group 1 were assessed with the Migraine Disability Assessment Questionnaire (MIDAS) and the Short-Form McGill Pain Questionnaire (SF-MPQ) at TP1 and TP2 after fMRI was performed. The ALFF and DC values were compared within Group 1 at two time points and between Group 1 and Group2. The correlation between ALFF and DC values with the statistical differences and the clinical scales scores were analyzed. RESULTS: Brain activities increased in the left fusiform gyrus and right angular gyrus, left middle occipital gyrus, and bilateral prefrontal cortex and decreased in left inferior parietal lobule in Group 1, which had different ALFF values compared with Group 2 at TP1. The bilateral fusiform gyrus, bilateral inferior temporal gyrus and right middle temporal gyrus increased and right angular gyrus, right superior marginal gyrus, right inferior parietal lobule, right middle occipital gyrus, right superior frontal gyrus, right middle frontal gyrus, right anterior central gyrus, and right supplementary motor area decreased in activity in Group 1 had different DC values compared with Group 2 at TP1. ALFF and DC values of right inferior temporal gyrus, right fusiform gyrus and right middle temporal gyrus were decreased in Group1 at TP1 compared with TP2. ALFF values in the left middle occipital area were positively correlated with the pain degree at TP1 in Group1 (correlation coefficient r, r = 0.827, r = 0.343; P < 0.01, P = 0.015). The DC values of the right inferior temporal area were positively correlated with the pain degree at TP1 in Group 1 (r = 0.371; P = 0.008). CONCLUSION: Spontaneous brain activity and network changes in young women with non-menstrual MwoA were altered by acupuncture. The right temporal area may be an important target for acupuncture modulated brain function in young women with non-menstrual MwoA.
Assuntos
Terapia por Acupuntura , Enxaqueca sem Aura , Humanos , Feminino , Imageamento por Ressonância Magnética/métodos , Lobo Occipital/diagnóstico por imagem , DorRESUMO
To explore the central processing mechanism of pain perception in chronic low back pain (cLBP) using multi-voxel pattern analysis (MVPA) based on the static and dynamic fractional amplitude of low-frequency fluctuations (fALFF) analysis, and spectral dynamic causal modeling (spDCM). Thirty-two patients with cLBP and 29 matched healthy controls (HCs) for the first cohort and 24 patients with cLBP and 22 HCs for the validation cohort underwent resting-state fMRI scan. The alterations in static and dynamic fALFF were as classification features to distinguish patients with cLBP from HCs. The brain regions gotten from the MVPA results were used for further spDCM analysis. We found that the most discriminative brain regions that contributed to the classification were the right supplementary motor area (SMA.R), left paracentral lobule (PCL.L), and bilateral cerebellar Crus II. The spDCM results displayed decreased excitatory influence from the bilateral cerebellar Crus II to PCL.L in patients with cLBP compared with HCs. Moreover, the conversion of effective connectivity from the bilateral cerebellar Crus II to SMA.R from excitatory influence to inhibitive influence, and the effective connectivity strength exhibited partially mediated effects on Chinese Short Form Oswestry Disability Index Questionnaire (C-SFODI) scores. Our findings suggest that the cerebellum and its weakened or inhibited connections to the motor cortex may be one of the underlying feedback pathways for pain perception in cLBP, and partially mediate the degree of dysfunction.
Assuntos
Dor Lombar , Córtex Motor , Humanos , Córtex Motor/diagnóstico por imagem , Dor Lombar/diagnóstico por imagem , Encéfalo , Cerebelo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodosRESUMO
Aim: This study aimed to explore the value of T1 mapping in assessing the grade and stage of rectal adenocarcinoma and its correlation with tumor tissue composition. Methods: Informed consent was obtained from all rectal cancer patients after approval by the institutional review board. Twenty-four patients (14 women and 10 men; mean age, 64.46 years; range, 35 - 82 years) were enrolled in this prospective study. MRI examinations were performed using 3.0T MR scanner before surgery. HE, immunohistochemical, and masson trichrome-staining was performed on the surgically resected tumors to assess the degree of differentiation, stage, and invasion. Two radiologists independently analyzed native T1 and postcontrast T1 for each lesion, and calculated the extracellular volume (ECV) was calculated from T1 values. Intraclass correlation coefficient (ICC) and Bland-Altman plots were applied to analyze the interobserver agreement of native T1 values and postcontrast T1 values. Student's t-test and one-way analysis of variance (ANOVA) were used to test the differences between T1 mapping parameters and differentiation types, T and N stages, and venous and neural invasion. Pearson correlation coefficients were used to analyze the correlation of T1 mapping extraction parameters with caudal type homeobox 2 (CDX-2), Ki-67 index, and collagen expression. Results: Both the native and postcontrast T1 values had an excellent interobserver agreement (ICC 0.945 and 0.942, respectively). Postcontrast T1 values indicated significant differences in venous invasion (t=2.497, p=0.021) and neural invasion (t=2.254, p=0.034). Pearson's correlation analysis showed a significant positive correlation between native T1 values and Ki-67 (r=-0.407, p=0.049). There was a significant positive correlation between ECV and collagen expression (r=0.811, p=.000) and a significant negative correlation between ECV and CDX-2 (r=-0.465, p=0.022) and Ki-67 (r=-0.549, p=0.005). Conclusion: Postcontrast T1 value can be used to assess venous and neural invasion in rectal cancer. ECV measurements based on T1 mapping can be used to identify cells and collagen fibers in rectal cancer.
RESUMO
Metabolism remodelling of macrophages in the glioblastoma microenvironment contributes to immunotherapeutic resistance. However, glioma stem cell (GSC)-initiated lipid metabolism remodelling of transformed macrophages (tMΦs) and its effect on the glioblastoma microenvironment have not been fully elucidated. Total cholesterol (TC) levels and lipid metabolism enzyme expression in macrophages in the GSC microenvironment were evaluated and found that the TC levels of tMΦs were increased, and the expression of the lipid metabolism enzymes calmodulin (CaM), apolipoprotein E (ApoE), and liver X receptor (LXR) was upregulated. Knockdown of HOXC-AS3 led to a decrease in the proliferation, colony formation, invasiveness, and tumorigenicity of tMΦs. Downregulation of CaM resulted in a decline in TC levels. HOXC-AS3 overexpression led to increases in both CaM expression levels and TC levels in tMΦs. RNA pull down and mass spectrometry experiments were conducted and heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) was screened as the HOXC-AS3 binding proteins related to lipid metabolism. RIP and RNA pull down assays verified that HOXC-AS3 can form a complex with hnRNPA1. Knockdown of hnRNPA1 downregulated CaM expression; however, downregulation of HOXC-AS3 did not affect hnRNPA1 expression.TMΦs underwent lipid metabolism remodelling induced by GSC via the HOXC-AS3/hnRNPA1/CaM pathway, which enhanced the protumor activities of tMΦs, and may serve as a potential metabolic intervening target to improve glioblastoma immunotherapy.
RESUMO
AIM: Diabetic cardiomyopathy (DCM) is a dominant factor contributing to diabetic death. Rutaecarpine has many cardiovascular biological effects and anti-high-glucose activity. Therefore, this paper aimed to investigate the impact of rutaecarpine on high glucose (HG)-elicited cardiomyocyte injury. METHOD: Cell counting kit 8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU), TdT-mediated dUTP Nick-End Labeling (TUNEL) assays judged H9c2 cell activity and apoptosis, and oxidative stress was assessed by corresponding assay kits. The expression of apoptosis, oxidative stress, autophagy-associated factors and TRPV1 were examined with western blot. IF assay tested GFP-LC3 expression. RESULTS: As a result, rutaecarpine had no obvious effect on the viability of H9c2 cells while elevated HG-exposed H9c2 cell viability. Rutaecarpine inhibited the apoptosis and oxidative stress of H9c2 cells induced by HG. In addition, rutaecarpine activated TRPV1 to induce autophagy. However, inhibition of TRPV1 inactivated the autophagy, which drove HG-evoked H9c2 apoptosis and oxidative stress. CONCLUSIONS: In conclusion, rutaecarpine suppressed HG-stimulated H9c2 cell viability injury, apoptosis as well as oxidative stress via promoting TRPV1-mediated autophagy (Fig. 10, Ref. 40).
Assuntos
Alcaloides Indólicos , Miócitos Cardíacos , Autofagia , Glucose/farmacologia , Alcaloides Indólicos/farmacologia , Animais , RatosRESUMO
OBJECTIVES: The aim of this study was to explore simultaneous brain network responses to electroacupuncture stimulation (EAS) at scalp acupoints by accounting for placebo effects. MATERIALS AND METHODS: Sixty healthy subjects were recruited and randomly divided into two groups: Group 1 and Group 2. Functional magnetic resonance imaging (fMRI) was performed in Group 1 with sham acupuncture stimulation at acupoints Shenting (GV24) and Touwei (ST8) without EAS. Group 2 underwent verum EAS at the same acupoints during fMRI. Independent component analysis was used to analyze the fMRI data. Full-factor statistical analysis was used to compare the differences in fMRI data between the two groups and evaluate the changes in functional connectivity in brain networks after verum electrical stimulation (Group 1 [after sham electrical current stimulation - before sham electrical current stimulation] - Group 2 [after verum electrical current stimulation - before verum electrical current stimulation]) (p <.001, extent threshold k = 20 voxels). RESULTS: Six brain networks were identified. Significant increased functional connectivity was observed in the right and left executive control networks, sensorimotor network, and attention network, while decreased functional connectivity was mainly found in the default mode network. There were no statistically significant differences in the salience network. CONCLUSIONS: fMRI with simultaneous EAS provides a method to explore brain network responses due to EAS at scalp acupoints. The networks responsible for cognition are differentially activated by EAS in a coordinated manner.
Assuntos
Encéfalo , Eletroacupuntura , Couro Cabeludo , Humanos , Pontos de Acupuntura , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Couro Cabeludo/diagnóstico por imagem , Couro Cabeludo/fisiologiaRESUMO
OBJECTIVE: To evaluate the accuracy of contrast-enhanced (CE) fat-suppressed three-dimensional (3D) T1-weighted imaging with volumetric interpolated breath-hold examination (FS-T1-3D-VIBE) and fat-suppressed T1-weighted turbo spin echo (FS-T1-TSE) sequence in characteristics of anal fistula. METHODS: One hundred and two patients underwent perianal CE-MRI examination on a 3T scanner including FS-T1-3D-VIBE and FS-T1-TSE sequences before surgery. The performance of each sequence was evaluated in terms of fistula classification, clarity of internal opening, number and position of internal openings including the distance between internal opening and anal verge, presence of secondary tracts and blind-ending sinus tracts. MRI findings were compared with surgical findings. Signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) of fistula, gluteus maximus, and subcutaneous fat were compared between CE FS-T1-TSE and CE FS-T1-3D-VIBE. RESULTS: Compared with CE FS-T1-TSE, CE FS-T1-3D-VIBE displayed more accurate in secondary tract, lithotomy position of the internal opening and the distance between internal opening and anal verge (P < 0.05). CE FS-T1-3D-VIBE was found superior to CE FS-T1-TSE in the clarity of the internal openings and in the diagnostic accuracy of blind-ending sinus tracts and complex fistulas in Standard Practice Task Force classification (P < 0.05). CE FS-T1-3D-VIBE achieved higher SNRs and CNRs in fistula and gluteus maximus than CE FS-T1-TSE (P ≤ 0.001). CONCLUSION: CE-MRI of FS-T1-3D-VIBE might be a more valuable noninvasive technique than FS-T1-TSE to evaluate the anal fistula on evaluating the lithotomy position of internal opening, distance between internal opening and anal verge, clarity of internal opening, secondary tract, blind-ending sinus tract and classification of the complex fistula. The trial registration number for this prospective trial was Chi-TR1800020206 and the trial registration date was December 20, 2018.
Assuntos
Imageamento Tridimensional , Fístula Retal , Suspensão da Respiração , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Fístula Retal/diagnóstico por imagemRESUMO
We explored the dynamic alterations of intrinsic brain activity and effective connectivity after acupuncture treatment to investigate the underlying neurological mechanism of acupuncture treatment in patients with migraine without aura (MwoA). The Functional Magnetic Resonance Imaging (fMRI) scans were separately obtained at baseline, after the first and 12th acupuncture sessions in 40 patients with MwoA. Compared with the healthy controls (HCs), patients with MwoA mostly showed a decreased dynamic amplitude of low-frequency fluctuation (dALFF) variability in the rostral ventromedial medulla (RVM), superior lobe of left cerebellum (Cerebellum_Crus1_L), right precuneus (PCUN.R), and so on. The decreased dALFF variability of RVM, Cerebellum_Crus1_L, and PCUN.R progressively recovered after the first and 12th acupuncture treatment sessions as compared to the baseline. There was gradually increased dynamic effective connectivity (DEC) variability in RVM outflow to the right middle frontal gyrus, left insula, right precentral gyrus, and right supramarginal gyrus, and gradually enhanced DEC variability from the right fusiform gyrus inflow to RVM. Furthermore, the gradually increased DEC variability was found from Cerebellum_Crus1_L outflow to the left middle occipital gyrus and the left precentral gyrus, from PCUN.R outflow to the right thalamus. These dALFF variabilities were positively correlated with the frequency of migraine attacks and negatively correlated with disease duration at baseline. The dynamic Granger causality analysis (GCA) coefficients of this DEC variability were positively correlated with Migraine-Specific Quality of Life Questionnaire scores and negatively correlated with the frequency of migraine attacks and visual analog scale (VAS) scores after 12th acupuncture sessions. Our results were analyzed by a longitudinal fMRI in the absence of a sham acupuncture control group and provided insight into the dynamic alterations of brain activity and effective connectivity in patients with MwoA after acupuncture intervention. Acupuncture might relieve MwoA by increasing the effective connectivity of RVM, Cerebellum_Crus1_L, and PCUN.R to make up for the decreased dALFF variability in these brain areas.
RESUMO
The aim of this article was to conduct a bibliometric analysis of global research trends in the field of exercise and metabolomics between 2005 and 2020. Systematic articles were obtained from the literature in the Web of Science core collection database from 2005 to 2020. The relationship between the number of publications, citations, countries, journals, authors, and the evolution of research hotspots was analyzed. A total of 807 studies were included in the analysis. From 2005 to 2020, the number of citations and the number of published articles showed an upward trend. Keyword co-occurrence indicates that research hotspots are focused on exercise, physical activity, metabolomics, obesity, insulin resistance, inflammation, and cardiovascular disease. Keyword clustering indicates that the research frontier is focused on the field of sports medicine, which includes molecular-level studies of exercise interventions in disease and studies of the physiological mechanisms by which exercise alters the body. Overall, this trinity of models, combining chronic disease with exercise interventions and molecular-level studies of metabolomics, has become the forefront of research in the field. This historical review of the field of exercise and metabolomics will further provide a useful basis for hot issues and future development trends.
RESUMO
Hepatic metastasis from hepatoid adenocarcinoma of the stomach (HAS) is a rare malignant tumor with hepatocellular differentiation. For the hepatic tumor in middle-aged and elderly people, the image presence of hepatocellular carcinoma (HCC) and production of large amounts of alpha fetoprotein (AFP) and the presence of stomach tumor, that suggest the diagnosis of hepatic metastasis from HAS. Here, the authors report a case of hepatic metastasis from HAS. The characteristics of the disease were analyzed on the basis of clinical symptoms, MR imaging findings, laboratory examinations and pathological diagnosis results. The imaging features and differential diagnosis methods of the disease were summarized combined with literature review, aiming to improve the understanding and diagnostic ability of the disease.
RESUMO
PURPOSE: To correlate non-invasive quantitative diffusion kurtosis imaging (DKI) and intravoxel incoherent motion-derived (IVIM) parameters with rectal cancer composition assessed by the expression of caudal-type homeobox 2 (CDX-2), Vimentin (VIM), CD34 and Ki-67 on resected tissues, as well as the tumor stroma ratio (TSR) and the results of H&E and Masson staining. MATERIALS AND METHODS: A prospective study of 26 patients with rectal cancer who underwent magnetic resonance (MR) imaging, including DKI with 4 b values and IVIM at 3.0 T prior to surgery. Primary tumor was harvested and fixed for H&E, immunohistochemistry and Masson staining. One-way ANOVA was used to test the differences. Pearson correlation coefficients and multiple linear regression analyses were applied to evaluation the correlations. RESULTS: The apparent diffusion coefficient (ADCDKI) and MKDKI all exhibited significant differences in subgroups with different T stages (P < 0.05) and among high- and low- grade rectal cancer (P < 0.05). MDDKI showed a moderate negative correlation with CDX-2 (r = - 0.42, P = 0.040) and a moderate positive correlation with CD34 (r = 0.42, P = 0.041). ADCIVIM exhibited a moderate positive correlation with Masson staining (r = 0.426, P = 0.048) DIVIM showed a moderate negative correlation with CDX-2 (r = - 0.58, P = 0.005). [Formula: see text] showed a moderate positive correlation with VIM (r = 0.445, P = 0.033). CONCLUSION: ADCDKI and MKDKI demonstrated a higher correlation with T stages and histologic grades. MDDKI showed significant correlations with CDX-2 and CD34. ADCIVIM showed significant correlation with Masson. DIVIM showed significant correlations with CDX-2 and [Formula: see text] showed significant correlation with VIM. These findings should be validated in a larger study.
Assuntos
Neoplasias Retais , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Movimento (Física) , Projetos Piloto , Estudos Prospectivos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/patologiaRESUMO
OBJECTIVE: To investigate the changes of regional homogeneity (Reho) values before and after spinal manipulative therapy (SMT) in patients with chronic low back pain (CLBP) through rest blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI). METHODS: Patients with CLBP (Group 1, n = 20) and healthy control subjects (Group 2, n = 20) were recruited. The fMRI was performed three times in Group 1 before SMT (time point 1, TP1), after the first SMT (time point 2, TP2), after the sixth SMT (time point 3, TP3), and for one time in Group 2, which received no intervention. The clinical scales were finished in Group 1 every time before fMRI was performed. The Reho values were compared among Group 1 at different time points, and between Group 1 and Group 2. The correlation between Reho values with the statistical differences and the clinical scale scores were calculated. RESULTS: The bilateral precuneus and right mid-frontal gyrus in Group 1 had different Reho values compared with Group 2 at TP1. The Reho values were increased in the left precuneus and decreased in the left superior frontal gyrus in Group 1 at TP2 compared with TP1. The Reho values were increased in the left postcentral gyrus and decreased in the left posterior cingulate cortex and the superior frontal gyrus in Group 1 at TP3 compared with TP1. The ReHo values of the left precuneus in Group 1 at TP1 were negatively correlated with the pain degree at TP1 and TP2 (r = -0.549, -0.453; p = 0.012, 0.045). The Reho values of the middle temporal gyrus in Group 1 at TP3 were negatively correlated with the changes of clinical scale scores between TP3 and TP1 (r = 0.454, 0.559; p = 0.044, 0.01). CONCLUSION: Patients with CLBP showed abnormal brain function activity, which was altered after SMT. The Reho values of the left precuneus could predict the immediate analgesic effect of SMT.
RESUMO
BACKGROUND: Nrf2 which was recently reported to regulate the antioxidant genes and cellular redox regulators was highly expressed in EPCs. However, its role in ox-LDL-induced EPC oxidative stress and apoptosis has not been fully illustrated. METHODS: EPCs isolated from human peripheral blood mononuclear cells were treated with different concentrations of ox-LDL, Keap1 siRNA, and a specific p38 MAPK inhibitor SB203580 and then used to assay the cytoplasmic Nrf2, nuclear Nrf2, NAD(P) H:quinone oxidoreductase 1 (NQO1) and Bax/Bcl-2 levels with Western blot, NQO1 mRNA levels with RT-PCR, ROS levels with H2DCF-DA, loss/disruption of mitochondrial membrane potential with JC-1, apoptosis with Annexin V and PI, migration with transwell chambers, and tube formation with Matrigel. RESULTS: ox-LDL decreased the nuclear Nrf2/Histone H3 to cytoplasmic Nrf2/GAPDH ratio, NQO1 mRNA, and protein levels. ox-LDL enhanced ROS production, induced the loss of membrane potential, and increased the cell shrinkage, pyknotic nuclei, and apoptosis of EPCs. Keap1 siRNA increased Nrf2 nuclear translocation, NQO1 mRNA transcription, and protein expression and prevented ROS generation and formation of JC-1 monomers. ox-LDL increased the activation of p38. SB203580 significantly eliminated ox-LDL induced inhibition of Nrf2 nuclear translocation, depression of NQO1 mRNA transcription, generation of ROS, and formation of JC-1 monomers in EPCs. Keap1 siRNA decreased the Bax/Bcl-2 ratio which was increased by ox-LDL in EPCs. ox-LDL decreased EPC migration and tube formation. Keap1 siRNA preserved the migration and tube formation of EPCs. CONCLUSION: ox-LDL activated EPCs p38/Keap1/Nrf2 pathway and induced oxidative stress, dysfunction, and apoptosis of EPCs.
RESUMO
OBJECTIVE: To investigate the changes in the functional connectivity (FC) in the right insula between migraine without aura (MWoA) and healthy controls by using resting-state functional magnetic resonance imaging (rs-fMRI), and to observe the instant alteration of FC in MWoA during electroacupuncture (EA) stimulation at Shuaigu (GB8). METHODS: A total of 30 patients with MWoA (PM group) and 30 healthy controls (HC group) underwent rs-fMRI scans. The PM group underwent a second rs-fMRI scan while receiving EA at GB8. The right insula subregions, including the ventral anterior insula (vAI), dorsal anterior insula (dAI) and posterior insula (PI), were selected as the seed points for FC analysis. RESULTS: Aberrant FC, including dAI with right postcentral gyrus, PI with left precuneus, was found among PM before EA (PMa), PM during EA (PMb) and HC. Meanwhile, decreased FC between dAI and the right postcentral gyrus was found in the PMa compared to the HC and PMb. Increased FC between the PI and left precuneus was found in the PMa compared to the HC and PMb. Correlation analysis showed that the FC value of the right postcentral gyrus in PMa was negatively correlated with the scores of Hamilton Rating Scale for Depression and Hamilton Rating Scale for Anxiety. The FC value of the left precuneus in PMa was positively correlated with the visual analogue scale score. CONCLUSION: The alteration of FC between the right insula subregions and multiple brain regions may be an important index for MWoA. EA at GB8 was able to adjust the FC between the right insula subregions and parietal lobe, namely, the right dAI and right postcentral gyrus, and the right PI and left precuneus, thereby rendering an instant effect in the management of MWoA.
Assuntos
Eletroacupuntura , Enxaqueca sem Aura , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodosRESUMO
PURPOSE: To compare the performance of a 12-channel flexible head coil (HFC12) with commercial 16-channel (HRC16) and 24-channel (HRC24) rigid coils. METHODS: The phantom study was performed on a 1.5 T MR scanner with HFC12, HRC16, and HRC24. The SNR and noise correlation matrix of T1WI, T2WI, and diffusion weighted imaging (DWI) were measured. The SNR profiles were created according to the SNR. In addition, 1/g-factors were calculated in different acceleration directions. In the in vivo study, T1WI, T2WI, and DWI were performed in one healthy volunteer with three different coils. The SNR and noise correlation matrix were measured. RESULTS: In the phantom study and in vivo study, the SNR of HFC12 in the transverse, sagittal, and coronal planes was the highest, followed by HRC24, and that of HRC16 was the lowest. The SNR profiles showed that the SNR at the edge of HFC12 was the highest. The mean value of the noise correlation matrix of HFC12 was the highest. The 1/g-factor results showed that HFC12 obtained the best acceleration ability in the head-foot acceleration direction when the reduction factor was set to two. The SNR of HFC12 in most cortices was significantly higher than that of HRC16 and HRC24, except in the occipital cortex. The SNR of HRC24 in the occipital cortex was higher than that of HFC12. CONCLUSION: The SNR of HFC12 in T1WI, T2WI, and DWI was better than that of the HRC24 and HFC16. The SNR of HFC12 in the cortex was significantly higher than that of the commercial rigid head coil, except in the occipital cortex.
Assuntos
Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos , Desenho de Equipamento , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Razão Sinal-RuídoRESUMO
OBJECTIVE: To investigate the effect of electroacupuncture (EA) on cognitive dysfunction in rats with hepatic encephalopathy and its underlying mechanism. METHODS: Fifty Wistar rats were randomly divided into a normal group (n = 10) and model group (n = 40). Rat models of hepatic encephalopathy were established by administration of carbon tetrachloride and thioacetamide for a total of 12 weeks. At the 9th week after modeling, rats with cognitive impairment in the model group were identified by conducting the Morris water maze test, which were then randomly divided into a control group (CCl4) and treatment groups including EA group (CCl4 + EA), lactulose group (CCl4 + Lac), and EA plus lactulose group (CCl4 + CM), with 9 rats in each group. At the end of the 9th week, rats in CCl4 + Lac and CCl4 + CM groups had lactulose gavage at a dose of 10 mL/kg body weight, while normal control and CCl4 groups had gavage with the same volume of normal saline once a day for 21 days until the end of the experiment. Rats in CCl4 + EA and CCl4 + CM groups underwent acupuncture at Baihui (GV[DU]20), Shenting (GV[DU]24), and Zusanli (ST36) acupoints, among which EA at Baihui and Shenting acupoints were given once daily for 30 min lasting for 21 consecutive days. The effect of the treatment was measured by the Morris water maze test for learning and memory ability and magnetic resonance spectroscopy (MRS) for neuronal metabolism in the hippocampus of rats with hepatic encephalopathy. Pathological change in the rat hippocampus was observed by HE staining, while serum ammonia and liver function markers were detected. Western blot and real-time fluorescent quantitative PCR were used to detect the expressions of specific genes and proteins in the brain tissue. RESULTS: Compared with those in the control group, rats undergoing EA had significantly shortened escape latency and increased number of platform crossing. H&E staining confirmed that EA improved brain tissue necrosis and ameliorated nuclear pyknosis in rats with hepatic encephalopathy. Significantly decreased levels of serum ammonia, alanine aminotransferase (ALT), aspartate transaminase (AST), total bilirubin (TBil), and total bile acid (TBA) were observed in rats undergoing EA, as well as improved levels of total protein (TP) and albumin (ALB). In addition, EA inhibited the brain expressions of TNF-α, IL-1ß, IL-6, iNOS, TLR4, MyD88, NF-κB, p38MAPK, phosphorylated (p)-p38MAPK, STAT3, and p-STAT3 genes, as well as protein expressions of TNF-α, IL-6, TLR4, MyD88, NF-κB, p38MAPK, p-p38MAPK, STAT3, and p-STAT3. MRS showed increased Glx/Cr and decreased NAA/Cr, Cho/Cr and mI/Cr in the control group, and EA significantly reversed such changes in Glx/Cr and mI/Cr values. CONCLUSION: EA ameliorated the production of excessive proinflammatory cytokines in the hippocampus of rats with cognitive dysfunction secondary to hepatic encephalopathy, which also gave rise to subsequent changes such as reduced blood ammonia level, brain-protective activated astrocytes, and lower degree of brain tissue injury. The p38MAPK/STAT3 and TLR4/MyD88/NF-κB signaling pathways may be involved. EA can also improve the metabolism of NAA and Cho in the rat hippocampus and thereby improve learning and memory abilities.