Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Headache Pain ; 25(1): 50, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565987

RESUMO

BACKGROUND: Migraine stands as a prevalent primary headache disorder, with prior research highlighting the significant involvement of oxidative stress and inflammatory pathways in its pathogenesis and chronicity. Existing evidence indicates the capacity of Dl-3-n-butylphthalide (NBP) to mitigate oxidative stress and inflammation, thereby conferring neuroprotective benefits in many central nervous system diseases. However, the specific therapeutic implications of NBP in the context of migraine remain to be elucidated. METHODS: We established a C57BL/6 mouse model of chronic migraine (CM) using recurrent intraperitoneal injections of nitroglycerin (NTG, 10 mg/kg), and prophylactic treatment was simulated by administering NBP (30 mg/kg, 60 mg/kg, 120 mg/kg) by gavage prior to each NTG injection. Mechanical threshold was assessed using von Frey fibers, and photophobia and anxious behaviours were assessed using a light/dark box and elevated plus maze. Expression of c-Fos, calcitonin gene-related peptide (CGRP), Nucleus factor erythroid 2-related factor 2 (Nrf2) and related pathway proteins in the spinal trigeminal nucleus caudalis (SP5C) were detected by Western blotting (WB) or immunofluorescence (IF). The expression of IL-1ß, IL-6, TNF-α, Superoxide dismutase (SOD) and malondialdehyde (MDA) in SP5C and CGRP in plasma were detected by ELISA. A reactive oxygen species (ROS) probe was used to detect the expression of ROS in the SP5C. RESULTS: At the end of the modelling period, chronic migraine mice showed significantly reduced mechanical nociceptive thresholds, as well as photophobic and anxious behaviours. Pretreatment with NBP attenuated nociceptive sensitization, photophobia, and anxiety in the model mice, reduced expression levels of c-Fos and CGRP in the SP5C and activated Nrf2 and its downstream proteins HO-1 and NQO-1. By measuring the associated cytokines, we also found that NBP reduced levels of oxidative stress and inflammation. Most importantly, the therapeutic effect of NBP was significantly reduced after the administration of ML385 to inhibit Nrf2. CONCLUSIONS: Our data suggest that NBP may alleviate migraine by activating the Nrf2 pathway to reduce oxidative stress and inflammation in migraine mouse models, confirming that it may be a potential drug for the treatment of migraine.


Assuntos
Benzofuranos , Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Doenças Neuroinflamatórias , Espécies Reativas de Oxigênio , Fotofobia , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Nitroglicerina/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo
2.
Cephalalgia ; 44(3): 3331024241235193, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38501875

RESUMO

BACKGROUND: The clinical profile of cluster headache may differ among different regions of the world, warranting interest in the data obtained from the initial Chinese Cluster Headache Register Individual Study (CHRIS) for better understanding. METHODS: We conducted a multicenter, prospective, longitudinal cohort study on cluster headache across all 31 provinces of China, aiming to gather clinical characteristics, treatment approaches, imaging, electrophysiological and biological samples. RESULTS: In total 816 patients were enrolled with a male-to-female ratio of 4.33:1. The mean age at consultation was 34.98 ± 9.91 years, and 24.89 ± 9.77 years at onset. Only 2.33% were diagnosed with chronic cluster headache, and 6.99% had a family history of the condition. The most common bout was one to two times per year (45.96%), lasting two weeks to one month (44.00%), and occurring frequently in spring (76.23%) and winter (73.04%). Of these, 68.50% experienced one to two attacks per day, with the majority lasting one to two hours (45.59%). The most common time for attacks was between 9 am and 12 pm (75.86%), followed by 1 am and 3 am (43.48%). Lacrimation (78.80%) was the most predominant autonomic symptom reported. Furthermore, 39.22% of patients experienced a delay of 10 years or more in receiving a correct diagnosis. Only 35.67% and 24.26% of patients received common acute and preventive treatments, respectively. CONCLUSION: Due to differences in ethnicity, genetics and lifestyle conditions, CHRIS has provided valuable baseline data from China. By establishing a dynamic cohort with comprehensive multidimensional data, it aims to advance the management system for cluster headache in China.


Assuntos
Cefaleia Histamínica , Feminino , Humanos , Masculino , China/epidemiologia , Cefaleia Histamínica/diagnóstico , Cefaleia Histamínica/epidemiologia , Cefaleia Histamínica/terapia , Estudos Longitudinais , Estudos Prospectivos , Adulto
3.
J Headache Pain ; 25(1): 31, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443795

RESUMO

BACKGROUND: Both epidemiological and clinical studies have indicated that headache and sleep disturbances share a complex relationship. Although headache and sleep share common neurophysiological and anatomical foundations, the mechanism underlying their interaction remains poorly understood. The structures of the diencephalon and brainstem, particularly the locus coeruleus (LC), are the primary sites where the sleep and headache pathways intersect. To better understand the intricate nature of the relationship between headache and sleep, our study focused on investigating the role and function of noradrenergic neurons in the LC during acute headache and acute sleep disturbance. METHOD: To explore the relationship between acute headache and acute sleep disturbance, we primarily employed nitroglycerin (NTG)-induced migraine-like headache and acute sleep deprivation (ASD) models. Initially, we conducted experiments to confirm that ASD enhances headache and that acute headache can lead to acute sleep disturbance. Subsequently, we examined the separate roles of the LC in sleep and headache. We observed the effects of drug-induced activation and inhibition and chemogenetic manipulation of LC noradrenergic neurons on ASD-induced headache facilitation and acute headache-related sleep disturbance. This approach enabled us to demonstrate the bidirectional function of LC noradrenergic neurons. RESULTS: Our findings indicate that ASD facilitated the development of NTG-induced migraine-like headache, while acute headache affected sleep quality. Furthermore, activating the LC reduced the headache threshold and increased sleep latency, whereas inhibiting the LC had the opposite effect. Additional investigations demonstrated that activating LC noradrenergic neurons further intensified pain facilitation from ASD, while inhibiting these neurons reduced this pain facilitation. Moreover, activating LC noradrenergic neurons exacerbated the impact of acute headache on sleep quality, while inhibiting them alleviated this influence. CONCLUSION: The LC serves as a significant anatomical and functional region in the interaction between acute sleep disturbance and acute headache. The involvement of LC noradrenergic neurons is pivotal in facilitating headache triggered by ASD and influencing the effects of headache on sleep quality.


Assuntos
Dor Aguda , Neurônios Adrenérgicos , Transtornos de Enxaqueca , Transtornos do Sono-Vigília , Humanos , Locus Cerúleo , Transtornos do Sono-Vigília/complicações , Cefaleia , Privação do Sono , Sono , Nitroglicerina
4.
Nucleic Acids Res ; 52(7): 3761-3777, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38324469

RESUMO

CtIP initiates DNA end resection and mediates homologous recombination (HR) repair. However, the underlying mechanisms of CtIP regulation and how the control of its regulation affects DNA repair remain incompletely characterized. In this study, NUDT16 loss decreases CtIP protein levels and impairs CtIP recruitment to double-strand breaks (DSBs). Furthermore, overexpression of a catalytically inactive NUDT16 mutant is unable to rescue decreased CtIP protein and impaired CtIP recruitment to DSBs. In addition, we identified a novel posttranslational modification of CtIP by ADP-ribosylation that is targeted by a PAR-binding E3 ubiquitin ligase, RNF146, leading to CtIP ubiquitination and degradation. These data suggest that the hydrolase activity of NUDT16 plays a major role in controlling CtIP protein levels. Notably, ADP-ribosylation of CtIP is required for its interaction with NUDT16, its localization at DSBs, and for HR repair. Interestingly, NUDT16 can also be ADP-ribosylated. The ADP-ribosylated NUDT16 is critical for CtIP protein stability, CtIP recruitment to DSBs, and HR repair in response to DNA damage. In summary, we demonstrate that NUDT16 and its PARylation regulate CtIP stability and CtIP recruitment to DSBs, providing new insights into our understanding of the regulation of CtIP-mediated DNA end resection in the HR repair pathway.


Assuntos
Endodesoxirribonucleases , Pirofosfatases , Reparo de DNA por Recombinação , Humanos , ADP-Ribosilação , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Quebras de DNA de Cadeia Dupla , Células HEK293 , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Processamento de Proteína Pós-Traducional , Pirofosfatases/metabolismo , Pirofosfatases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
5.
iScience ; 27(2): 108847, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38313047

RESUMO

The integration of stereoelectroencephalography with therapeutic deep brain stimulation (DBS) holds immense promise as a viable approach for precise treatment of refractory disorders, yet it has not been explored in the domain of headache or pain management. Here, we implanted 14 electrodes in a patient with refractory migraine and integrated clinical assessment and electrophysiological data to investigate personalized targets for refractory headache treatment. Using statistical analyses and cross-validated machine-learning models, we identified high-frequency oscillations in the right nucleus accumbens as a critical headache-related biomarker. Through a systematic bipolar stimulation approach and blinded sham-controlled survey, combined with real-time electrophysiological data, we successfully identified the left dorsal anterior cingulate cortex as the optimal target for the best potential treatment. In this pilot study, the concept of the herein-proposed data-driven approach to optimizing precise and personalized treatment strategies for DBS may create a new frontier in the field of refractory headache and even pain disorders.

6.
iScience ; 26(11): 108153, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867938

RESUMO

Medication overuse headache (MOH) is a serious global condition. The interaction between headache attacks and medication overuse complicates the understanding of its pathophysiology. In this study, we developed a preclinical MOH model that incorporates these two key factors by overusing rizatriptan benzoate (RIZ, 4 mg/kg, i.g.) in a glyceryl trinitrate (GTN, 10 mg/kg, i.p.) induced chronic migraine mouse model. We observed that RIZ overuse aggravated GTN-induced cutaneous allodynia and caused a prolonged state of latent sensitization. We also detected a significant upregulation of Annexin-A1 (ANXA1), a protein mainly expressed in the microglia of the spinal trigeminal nucleus caudalis (SPVC), in GTN+RIZ mice. Intracerebroventricular injection of ANXA1-derived peptide Ac2-26 trifluoroacetic acid (TFA) (5 µg/mouse) inhibited bright light stress (BLS) induced acute allodynia via the formyl peptide receptor (FPR) in GTN+RIZ mice. These results suggest that ANXA1 may have an analgesic effect in triptan-associated MOH and could potentially serve as a therapeutic target.

7.
J Headache Pain ; 24(1): 122, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37667199

RESUMO

BACKGROUND: Migraine, a complex brain disorder, is regarded as a possible clinical manifestation of brain energy dysfunction. The trigeminovascular system is considered the basis for the pathogenesis of migraine, hence we depicted the proteomics profiling of key regions in this system, then focusing on protein alterations related to mitochondrial function. The aim of this study is to illustrate the role of mitochondria in migraine. METHODS: A mouse model of chronic migraine (CM) was established by repeated nitroglycerin (NTG) stimulation and evaluated by von-Frey filaments, a hot plate and a light-dark box. Differentially expressed proteins (DEPs) in some subcortical brain regions of the trigeminovascular system were screened through liquid chromatography-tandem mass spectrometry (LC‒MS/MS) to analyse the specificity of key signaling pathways in different brain regions. And then mitochondrial function, structure and dynamics were determined by qPCR, ELISA, and transmission electron microscope (TEM). Finally, the effect of mitochondrial intervention-Urolithin A (UA) on CM was investigated. RESULTS: Repeated NTG injection triggered photophobia, periorbital and hind paw allodynia in mice. The proteomics profiling of CM model showed that 529, 109, 163, 152 and 419 DEPs were identified in the thalamus, hypothalamus, periaqueductal grey (PAG), trigeminal ganglion (TG) and trigeminocervical complex (TCC), respectively. The most significant changes in the brain region-specific pathways pointed to thalamic mitochondrial impairment. NTG induced mitochondrial structural disruption, dysfunction and homeostatic dysregulation, which could be partially attenuated by UA intervention. CONCLUSION: Our findings highlight the involvement of mitochondrial damage in the thalamus in central sensitization of CM, which provides evidence of possible metabolic mechanisms in migraine pathophysiology.


Assuntos
Transtornos de Enxaqueca , Proteômica , Animais , Camundongos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Tálamo , Modelos Animais de Doenças , Nitroglicerina/toxicidade
8.
Headache ; 63(8): 1109-1118, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37655645

RESUMO

OBJECTIVE: The study assessed the association between migraine and cardiovascular disease (CVD) mortality in the US population. BACKGROUND: Previous studies have drawn different conclusions about the association between migraine and CVD mortality based on different populations; therefore, it is important to explore the relationship between migraine and CVD mortality in the US population. METHODS: This prospective cohort study included 10,644 participants from the National Health and Nutrition Examination Survey (NHANES) 1999-2004. Participants who reported having severe headache or migraine were classified as having migraine. Mortality data were obtained by linkage of the cohort database to the National Death Index as of December 31, 2019. Based on the International Classification of Diseases, Tenth Revision, CVD mortality includes the following disease codes: I00-I09 (acute rheumatic fever and chronic rheumatic heart diseases), I11 (hypertensive heart disease), I13 (hypertensive heart and renal disease), I20-I25 (ischemic heart diseases), I26-I28 (pulmonary embolism and other acute pulmonary heart diseases), I29 (various cardiovascular diseases caused by different reasons), I30-I51 (other forms of heart disease), and I60-I69 (cerebrovascular diseases). Data were analyzed from October to November 2022. RESULTS: Among 10,644 adults included in the study (mean age, 46.4 [0.3] years, 5430 men [47.4%]), 2106 (20.4%) had migraine. During a median follow-up period of 201 months, there were 3078 all-cause deaths and 997 CVD deaths. Compared to individuals without migraine, those with migraine had an adjusted hazard ratio (HR) of 1.30 (95% confidence interval [CI], 1.04-1.62; p = 0.019) for CVD mortality and 1.23 (95% CI, 1.13-1.35; p < 0.001) for all-cause mortality. In subgroup analyses, migraine was associated with CVD mortality in participants who were women (HR, 1.43; 95% CI, 1.06-1.93), aged < 45 years (HR, 1.69; 95% CI, 1.04-2.76), non-Hispanic White (HR, 1.42; 95% CI, 1.09-1.86), those with a body mass index < 30 kg/m2 (HR, 1.36; 95% CI, 1.03-1.78), former or current smokers (HR, 1.36; 95% CI, 1.00-1.85), former or current alcohol drinkers (HR, 1.33; 95% CI, 1.03-1.72), and those without metabolic syndrome (HR, 1.31; 95% CI, 1.01-1.71). The association between migraine and CVD mortality was robust in sensitivity analyses, after excluding participants who died within 2 years of follow-up (HR, 1.31; 95% CI, 1.05-1.65) or those with a history of cancer at baseline (HR, 1.28; 95% CI, 1.01-1.62). CONCLUSIONS: Migraine was associated with a higher CVD mortality rate in the US population.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Hipertensão , Transtornos de Enxaqueca , Adulto , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Doenças Cardiovasculares/epidemiologia , Inquéritos Nutricionais , Estudos Prospectivos , Estudos de Coortes , Transtornos de Enxaqueca/epidemiologia
9.
Ann Neurol ; 94(6): 1168-1181, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635687

RESUMO

OBJECTIVE: Migraine has been demonstrated to exhibit abnormal functional connectivity of large-scale brain networks, which is closely associated with its pathophysiology and has not yet been explored by edge functional connectivity. We used an edge-centric approach combined with motif analysis to evaluate higher-order communication patterns of brain networks in migraine. METHODS: We investigated edge-centric metrics in 108 interictal migraine patients and 71 healthy controls. We parcellated the brain into networks using independent component analysis. We applied edge graph construction, k-means clustering, community overlap detection, graph-theory-based evaluations, and clinical correlation analysis. We conducted motif analysis to explore the interactions among regions, and a classification model to test the specificity of edge-centric results. RESULTS: The normalized entropy of lateral thalamus was significantly increased in migraine, which was positively correlated with the baseline headache duration, and negatively correlated with headache duration reduction following preventive medications at 3-month follow-up. Network-wise entropy of the sensorimotor network was significantly elevated in migraine. The community similarity between lateral thalamus and postcentral gyrus was enhanced in migraine. Migraine patients showed overrepresented L-shape and diverse motifs, and underrepresented forked motifs with lateral thalamus serving as the reference node. Furthermore, migraine patients presented with overrepresented L-shape triads, where the postcentral gyrus shared different edges with the lateral thalamus. The classification model showed that entropy of the lateral thalamus had the highest discriminative power, with an area under the curve of 0.86. INTERPRETATION: Our findings indicated an abnormal higher-order thalamo-cortical communication pattern in migraine patients. The thalamo-cortical-somatosensory disturbance of concerted working may potentially lead to aberrant information flow and deficit pain processing of migraine. ANN NEUROL 2023;94:1168-1181.


Assuntos
Imageamento por Ressonância Magnética , Transtornos de Enxaqueca , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos de Enxaqueca/diagnóstico por imagem , Encéfalo , Tálamo/diagnóstico por imagem , Cefaleia
10.
J Ovarian Res ; 16(1): 122, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370140

RESUMO

Poly-ADP Ribose Polymerase (PARP) targeted therapy is clinically approved for the treatment of homologous recombination (HR) repair deficient tumors. The remarkable success of this therapy in the treatment of HR repair deficient cancers has not translated to HR-proficient cancers. Our studies identify the novel role of non-receptor lymphocyte-specific protein tyrosine kinase (LCK) in the regulation of HR repair in endometrioid epithelial ovarian cancer (eEOC) model. We show that DNA damage leads to direct interaction of LCK with the HR repair proteins RAD51 and BRCA1 in a kinase dependent manner RAD51 and BRCA1 stabilization. LCK expression is induced and activated in the nucleus in response to DNA damage insult. Disruption of LCK expression attenuates RAD51, BRCA1, and BRCA2 protein expression by hampering there stability and results in inhibition of HR-mediated DNA repair including suppression of RAD51 foci formation, and augmentation of γH2AX foci formation. In contrast LCK overexpression leads to increased RAD51 and BRCA1 expression with a concomitant increase in HR DNA damage repair. Importantly, attenuation of LCK sensitizes HR-proficient eEOC cells to PARP inhibitor in cells and pre-clinical mouse studies. Collectively, our findings identify a novel therapeutic strategy to expand the utility of PARP targeted therapy in HR proficient ovarian cancer.


Assuntos
Carcinoma Endometrioide , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Proteína BRCA1/genética , Carcinoma Endometrioide/tratamento farmacológico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Recombinação Homóloga , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
11.
J Headache Pain ; 24(1): 61, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231359

RESUMO

BACKGROUND: Migraine is a highly disabling health burden with multiple symptoms; however, it remains undertreated because of an inadequate understanding of its neural mechanisms. Neuropeptide Y (NPY) has been demonstrated to be involved in the modulation of pain and emotion, and may play a role in migraine pathophysiology. Changes in NPY levels have been found in patients with migraine, but whether and how these changes contribute to migraine is unknown. Therefore, the purpose of this study was to investigate the role of NPY in migraine-like phenotypes. METHODS: Here, we used intraperitoneal injection of glyceryl trinitrate (GTN, 10 mg/kg) as a migraine mouse model, which was verified by light-aversive test, von Frey test, and elevated plus maze test. We then performed whole-brain imaging with NPY-GFP mice to explore the critical regions where NPY was changed by GTN treatment. Next, we microinjected NPY into the medial habenula (MHb), and further infused Y1 or Y2 receptor agonists into the MHb, respectively, to detect the effects of NPY in GTN-induced migraine-like behaviors. RESULTS: GTN effectively triggered allodynia, photophobia, and anxiety-like behaviors in mice. After that, we found a decreased level of GFP+ cells in the MHb of GTN-treated mice. Microinjection of NPY attenuated GTN-induced allodynia and anxiety without affecting photophobia. Furthermore, we found that activation of Y1-but not Y2-receptors attenuated GTN-induced allodynia and anxiety. CONCLUSIONS: Taken together, our data support that the NPY signaling in the MHb produces analgesic and anxiolytic effects through the Y1 receptor. These findings may provide new insights into novel therapeutic targets for the treatment of migraine.


Assuntos
Habenula , Transtornos de Enxaqueca , Camundongos , Animais , Neuropeptídeo Y/farmacologia , Receptores de Neuropeptídeo Y/metabolismo , Habenula/metabolismo , Hiperalgesia/tratamento farmacológico , Fotofobia , Transtornos de Enxaqueca/tratamento farmacológico
12.
Nucleic Acids Res ; 51(5): 2238-2256, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36794849

RESUMO

The 53BP1-dependent end-joining pathway plays a critical role in double-strand break (DSB) repair. However, the regulators of 53BP1 in chromatin remain incompletely characterized. In this study, we identified HDGFRP3 (hepatoma-derived growth factor related protein 3) as a 53BP1-interacting protein. The HDGFRP3-53BP1 interaction is mediated by the PWWP domain of HDGFRP3 and the Tudor domain of 53BP1. Importantly, we observed that the HDGFRP3-53BP1 complex co-localizes with 53BP1 or γH2AX at sites of DSB and participates in the response to DNA damage repair. Loss of HDGFRP3 impairs classical non-homologous end-joining repair (NHEJ), curtails the accumulation of 53BP1 at DSB sites, and enhances DNA end-resection. Moreover, the HDGFRP3-53BP1 interaction is required for cNHEJ repair, 53BP1 recruitment at DSB sites, and inhibition of DNA end resection. In addition, loss of HDGFRP3 renders BRCA1-deficient cells resistant to PARP inhibitors by facilitating end-resection in BRCA1 deficient cells. We also found that the interaction of HDGFRP3 with methylated H4K20 was dramatically decreased; in contrast, the 53BP1-methylated H4K20 interaction was increased after ionizing radiation, which is likely regulated by protein phosphorylation and dephosphorylation. Taken together, our data reveal a dynamic 53BP1-methylated H4K20-HDGFRP3 complex that regulates 53BP1 recruitment at DSB sites, providing new insights into our understanding of the regulation of 53BP1-mediated DNA repair pathway.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular , DNA/genética , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
14.
J Headache Pain ; 23(1): 92, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35906563

RESUMO

BACKGROUND: There have been a few studies regarding the pre-attack symptoms (PAS) and pre-episode symptoms (PES) of cluster headache (CH), but none have been conducted in the Chinese population. The purpose of this study was to identify the prevalence and features of PAS and PES in Chinese patients, as well as to investigate their relationships with pertinent factors. METHODS: The study included patients who visited a tertiary headache center and nine other headache clinics between January 2019 and September 2021. A questionnaire was used to collect general data and information about PAS and PES. RESULTS: Among the 327 patients who met the CH criteria (International Classification of Headache Disorders, 3rd edition), 269 (82.3%) patients experienced at least one PAS. The most common PAS were head and facial discomfort (74.4%). Multivariable logistic regression analysis depicted that the number of triggers (OR = 1.798, p = 0.001), and smoking history (OR = 2.067, p = 0.026) were correlated with increased odds of PAS. In total, 68 (20.8%) patients had PES. The most common symptoms were head and facial discomfort (23, 33.8%). Multivariable logistic regression analysis showed that the number of triggers were associated with increased odds of PES (OR = 1.372, p = 0.005). CONCLUSIONS: PAS are quite common in CH patients, demonstrating that CH attacks are not comprised of a pain phase alone; investigations of PAS and PES could help researchers better understand the pathophysiology of CH.


Assuntos
Cefaleia Histamínica , China/epidemiologia , Cefaleia Histamínica/diagnóstico , Cefaleia Histamínica/epidemiologia , Estudos Transversais , Cefaleia , Humanos , Estudos Multicêntricos como Assunto , Medição da Dor
15.
J Headache Pain ; 23(1): 71, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752773

RESUMO

BACKGROUND: Gut microbial dysbiosis and gut-brain axis dysfunction have been implicated in the pathophysiology of migraine. However, it is unclear whether migraine-related cephalic allodynia could induce the alteration of gut microbial composition. METHODS: A classic migraine rat model was established by repeated dural infusions of inflammatory soup (IS). Periorbital mechanical threshold and nociception-related behaviors were used to evaluate IS-induced cephalic allodynia and the preventive effect of topiramate. The alterations in gut microbial composition and potential metabolic pathways were investigated based on the results of 16 S rRNA gene sequencing. Microbiota-related short-chain fatty acids and tryptophan metabolites were detected and quantified by mass spectrometry analysis. RESULTS: Repeated dural IS infusions induced cephalic allodynia (decreased mechanical threshold), migraine-like behaviors (increased immobility time and reduced moving distance), and microbial composition alteration, which were ameliorated by the treatment of topiramate. Decreased Lactobacillus was the most prominent biomarker genus in the IS-induced alteration of microbial composition. Additionally, IS infusions also enhanced metabolic pathways of the gut microbiota in butanoate, propanoate, and tryptophan, while the increased tryptophan-related metabolites indole-3-acetamide and tryptophol in feces could be the indicators. CONCLUSIONS: Inflammatory dural stimulation-induced cephalic allodynia causes the alterations of gut microbiota profile and microbial metabolic pathways.


Assuntos
Microbioma Gastrointestinal , Transtornos de Enxaqueca , Animais , Microbioma Gastrointestinal/genética , Humanos , Hiperalgesia/metabolismo , Ratos , Ratos Sprague-Dawley , Topiramato , Triptofano
16.
J Zhejiang Univ Sci B ; 22(1): 38-46, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33448186

RESUMO

Maintenance of cellular homeostasis and genome integrity is a critical responsibility of DNA double-strand break (DSB) signaling. P53-binding protein 1 (53BP1) plays a critical role in coordinating the DSB repair pathway choice and promotes the non-homologous end-joining (NHEJ)-mediated DSB repair pathway that rejoins DSB ends. New insights have been gained into a basic molecular mechanism that is involved in 53BP1 recruitment to the DNA lesion and how 53BP1 then recruits the DNA break-responsive effectors that promote NHEJ-mediated DSB repair while inhibiting homologous recombination (HR) signaling. This review focuses on the up- and downstream pathways of 53BP1 and how 53BP1 promotes NHEJ-mediated DSB repair, which in turn promotes the sensitivity of poly(ADP-ribose) polymerase inhibitor (PARPi) in BRCA1-deficient cancers and consequently provides an avenue for improving cancer therapy strategies.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína BRCA1/metabolismo , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Humanos , Proteínas Mad2/metabolismo , Modelos Biológicos , Poli ADP Ribosilação , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Pirofosfatases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química
18.
Nucleic Acids Res ; 48(19): 10940-10952, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33010150

RESUMO

ATR functions as a master regulator of the DNA-damage response. ATR activation requires the ATR activator, topoisomerase IIß-binding protein 1 (TopBP1). However, the underlying mechanism of TopBP1 regulation and how its regulation affects DNA replication remain unknown. Here, we report a specific interaction between TopBP1 and the histone demethylase PHF8. The TopBP1/PHF8 interaction is mediated by the BRCT 7+8 domain of TopBP1 and phosphorylation of PHF8 at Ser854. This interaction is cell-cycle regulated and phosphorylation-dependent. PHF8 is phosphorylated by CK2, which regulates binding of PHF8 to TopBP1. Importantly, PHF8 regulates TopBP1 protein level by preventing its ubiquitination and degradation mediated by the E3 ligase UBR5. Interestingly, PHF8pS854 is likely to contribute to regulation of TopBP1 stability and DNA replication checkpoint. Further, both TopBP1 and PHF8 are required for efficient replication fork restart. Together, these data identify PHF8 as a TopBP1-binding protein and provide mechanistic insight into how PHF8 regulates TopBP1 stability to maintain DNA replication.


Assuntos
Proteínas de Transporte/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Histona Desmetilases/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Caseína Quinase II/metabolismo , Linhagem Celular , Humanos , Fosforilação , Ligação Proteica , Domínios Proteicos
19.
Cancer Res ; 80(5): 999-1010, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911551

RESUMO

53BP1 controls two downstream subpathways, one mediated by PTIP and Artemis and the other by RIF1 and MAD2L2/Shieldin, to coordinate DNA repair pathway choices. However, the upstream regulator(s) of 53BP1 function in DNA repair remain unknown. We and others recently reported that TIRR associates with 53BP1 to stabilize it and prevents 53BP1 localization to DNA damage sites by blocking 53BP1 Tudor domain binding to H4K20me2 sites. Here, we report that the Nudix hydrolase NUDT16, a TIRR homolog, regulates 53BP1 stability. We identified a novel posttranslational modification of 53BP1 by ADP-ribosylation that is targeted by a PAR-binding E3 ubiquitin ligase, RNF146, leading to 53BP1 polyubiquitination and degradation. In response to DNA damage, ADP-ribosylated 53BP1 increased significantly, resulting in its ubiquitination and degradation. These data suggest that NUDT16 plays a major role in controlling 53BP1 levels under both normal growth conditions and during DNA damage. Notably, overexpression of a NUDT16 catalytically inactive mutant blocked 53BP1 localization to double-strand breaks because (i) the mutant binding to TIRR increased after IR; (ii) the mutant enhanced 53BP1 Tudor domain binding to TIRR, and (iii) the mutant impaired the interaction of 53BP1 Tudor domain with H4K20me2. Moreover, NUDT16's catalytic hydrolase activity was required for 53BP1 de-ADP-ribosylation, 53BP1 protein stability, and its function in cell survival. In summary, we demonstrate that NUDT16 regulates 53BP1 stability and 53BP1 recruitment at double-strand breaks, providing yet another mechanism of 53BP1 regulation.Significance: This study provides a novel mechanism of 53BP1 regulation by demonstrating that NUDT16 has hydrolase activities that remove ADP-ribosylation of 53BP1 to regulate 53BP1 stability and 53BP1 localization at DSBs.


Assuntos
ADP-Ribosilação , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Pirofosfatases/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Histonas/metabolismo , Humanos , Mutação , Ligação Proteica , Estabilidade Proteica , Pirofosfatases/genética , Ubiquitina-Proteína Ligases/metabolismo
20.
J Biol Chem ; 295(1): 250-262, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796627

RESUMO

Shieldin complex subunit 3 (SHLD3) is the apical subunit of a recently-identified shieldin complex and plays a critical role in DNA double-strand break repair. To fulfill its function in DNA repair, SHLD3 interacts with the mitotic spindle assembly checkpoint protein REV7 homolog (REV7), but the details of this interaction remain obscure. Here, we present the crystal structures of REV7 in complex with SHLD3's REV7-binding domain (RBD) at 2.2-2.3 Å resolutions. The structures revealed that the ladle-shaped RBD in SHLD3 uses its N-terminal loop and C-terminal α-helix (αC-helix) in its interaction with REV7. The N-terminal loop exhibited a structure similar to those previously identified in other REV7-binding proteins, and the less-conserved αC-helix region adopted a distinct mode for binding REV7. In vitro and in vivo binding analyses revealed that the N-terminal loop and the αC-helix are both indispensable for high-affinity REV7 binding (with low-nanomolar affinity), underscoring the crucial role of SHLD3 αC-helix in protein binding. Moreover, binding kinetics analyses revealed that the REV7 "safety belt" region, which plays a role in binding other proteins, is essential for SHLD3-REV7 binding, as this region retards the dissociation of the RBD from the bound REV7. Together, the findings of our study reveal the molecular basis of the SHLD3-REV7 interaction and provide critical insights into how SHLD3 recognizes REV7.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/química , Proteínas Mad2/química , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Sequência Conservada , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Mad2/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Reparo de DNA por Recombinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA