Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 367: 121968, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39068787

RESUMO

Volatile organic compounds (VOCs) emitted into the atmosphere negatively affect the environment and human health. Biotrickling filtration, an effective technology for treating VOC-laden waste gases, faces challenges in removing hydrophobic VOCs due to their low water solubility and therefore limited bioavailability to microorganisms. Consequently, the addition of (bio)surfactants has proven to be a promising strategy to enhance the removal of hydrophobic VOCs in biotrickling filters (BTFs). Yet, up to now, no single study has ever performed a mass transfer characterization of a BTF under (bio)surfactants addition. In this study, the effect of (bio)surfactant addition on the gas-liquid mass transfer characteristics of two BTFs was measured by using oxygen (O2) as a model gas. Through an empirical correlation, the mass transfer coefficients (kLa) of two hydrophobic VOCs, toluene and hexane, which are of industrial and environmental significance, were estimated. One BTF was filled with expanded perlite, while the other with a mixture of compost and wood chips (C + WC). Both BTFs were operated under different liquid velocities (UL: 0.95 and 1.53 m h-1). Saponin, a biological surfactant, and Tween 80, a synthetic surfactant, were added to the recirculating liquid at different critical micelle concentrations (CMCs: 0-3 CMC). The higher interfacial and surface area of the perlite BTF compared to the C + WC BTF led to higher kLaO2 values regardless of the operational condition: 308 ± 18-612 ± 19 h-1 versus 42 ± 4-177 ± 24 h-1, respectively. Saponin addition at 0.5 and 1 CMC had positive effects on the perlite BTF, with kLaO2 values two times higher compared to those at 0 CMC. Tween 80 exhibited a neutral or slightly positive effect on the mass transfer of both BTFs under all conditions. Overall, the CMC, along with the physical characteristics of the packing materials and the operational conditions evaluated explained the results obtained. This study provides fundamental data essential to improve the performance and design of BTFs for hydrophobic VOCs abatement.


Assuntos
Poluição do Ar , Filtração , Tensoativos , Compostos Orgânicos Voláteis , Tensoativos/química , Poluição do Ar/prevenção & controle , Poluentes Atmosféricos
2.
J Environ Manage ; 353: 120132, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38286067

RESUMO

The removal of volatile organic compounds (VOCs) in air is of utmost importance to safeguard both environmental quality and human well-being. However, the low aqueous solubility of hydrophobic VOCs results in poor removal in waste gas biofilters (BFs). In this study, we evaluated the addition of (bio)surfactants in three BFs (BF1 and BF2 mixture of compost and wood chips (C + WC), and BF3 filled with expanded perlite) to enhance the removal of cyclohexane and hexane from a polluted gas stream. Experiments were carried out to select two (bio)surfactants (i.e., Tween 80 and saponin) out of five (sodium dodecyl sulfate (SDS), Tween 80, surfactin, rhamnolipid and saponin) from a physical-chemical (i.e., decreasing VOC gas-liquid partitioning) and biological (i.e., the ability of the microbial consortium to grow on the (bio)surfactants) point of view. The results show that adding Tween 80 at 1 critical micelle concentration (CMC) had a slight positive effect on the removal of both VOCs, in BF1 (e.g., 7.0 ± 0.6 g cyclohexane m-3 h-1, 85 ± 2% at 163 s; compared to 6.7 ± 0.4 g cyclohexane m-3 h-1, 76 ± 2% at 163 s and 0 CMC) and BF2 (e.g., 4.3 ± 0.4 g hexane m-3 h-1, 27 ± 2% at 82 s; compared to 3.1 ± 0.7 g hexane m-3 h-1, 16 ± 4% at 82 s and 0 CMC), but a negative effect in BF3 at either 1, 3 and 9 CMC (e.g., 2.4 ± 0.4 g hexane m-3 h-1, 30 ± 4% at 163 s and 1 CMC; compared to 4.6 ± 1.0 g hexane m-3 h-1, 43 ± 8% at 163 s and 0 CMC). In contrast, the performance of all BFs improved with the addition of saponin, particularly at 3 CMC. Notably, in BF3, the elimination capacity (EC) and removal efficiency (RE) doubled for both VOCs (i.e., 9.1 ± 0.6 g cyclohexane m-3 h-1, 49 ± 3%; 4.3 ± 0.3 g hexane m-3 h-1, 25 ± 3%) compared to no biosurfactant addition (i.e., 4.5 ± 0.4 g cyclohexane m-3 h-1, 23 ± 3%; hexane 2.2 ± 0.5 g m-3 h-1, 10 ± 2%) at 82 s. Moreover, the addition of the (bio)surfactants led to a shift in the microbial consortia, with a different response in BF1-BF2 compared to BF3. This study evaluates for the first time the use of saponin in BFs, it demonstrates that cyclohexane and hexane RE can be improved by (bio)surfactant addition, and it provides recommendations for future studies in this field.


Assuntos
Saponinas , Compostos Orgânicos Voláteis , Humanos , Tensoativos/química , Hexanos , Polissorbatos , Cicloexanos , Filtração/métodos
3.
Molecules ; 28(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138568

RESUMO

This study explores an eco-friendly method for recovering platinum group metals from a synthetic automotive three-way catalyst (TWC). Bioleaching of palladium (Pd) using the thiosulfate-copper-ammonia leaching processes, with biogenic thiosulfate sourced from a bioreactor used for biogas biodesulfurization, is proposed as a sustainable alternative to conventional methods. Biogenic thiosulfate production was optimized in a gas-lift bioreactor by studying the pH (8-10) and operation modes (batch and continuous) under anoxic and microaerobic conditions for 35 d. The maximum concentration of 4.9 g S2O32- L-1 of biogenic thiosulfate was reached under optimal conditions (batch mode, pH = 10, and airflow rate 0.033 vvm). To optimize Pd bioleaching from a ground TWC, screening through a Plackett-Burman design determined that oxygen and temperature significantly affected the leaching yield negatively and positively, respectively. Based on these results, an optimization through an experimental design was performed, indicating the optimal conditions to be Na2S2O3 1.2 M, CuSO4 0.03 M, (NH4)2SO4 1.5 M, Na2SO3 0.2 M, pH 8, and 60 °C. A remarkable 96.2 and 93.2% of the total Pd was successfully extracted from the solid at 5% pulp density using both commercially available and biogenic thiosulfate, highlighting the method's versatility for Pd bioleaching from both thiosulfate sources.

4.
Sci Total Environ ; 904: 167326, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37748600

RESUMO

The emission of volatile organic compounds (VOCs) into the atmosphere causes negative environmental and health effects. Biofiltration is known to be an efficient and cost-effective treatment technology for the removal of VOCs in waste gas streams. However, little is known on the removal of VOC mixtures and the effect of operational conditions, particularly for hydrophobic VOCs, and on the microbial populations governing the biofiltration process. In this study, we evaluated the effect of inoculum type (acclimated activated sludge (A-AS) versus Rhodococcus erythropolis) and packing material (mixture of compost and wood chips (C + WC) versus expanded perlite) on the removal of a mixture of hydrophobic VOCs (toluene, cyclohexane and hexane) in three biofilters (BFs), i.e., BF1: C + WC and R. erythropolis; BF2: C + WC and A-AS; and BF3: expanded perlite and R. erythropolis. The BFs were operated for 374 days at varying inlet loads (ILs) and empty bed residence times (EBRTs). The results showed that the VOCs were removed in the following order: toluene > cyclohexane > hexane, which corresponds to their air-water partitioning coefficient and thus bioavailability of each VOC. Toluene is the most hydrophilic VOC, while hexane is the most hydrophobic. BF2 outperformed BF1 and BF3 in each operational phase, with average maximum elimination capacities (ECmax) of 21 ± 3 g toluene m-3 h-1 (removal efficiency (RE): 100 %; EBRT: 82 s), 11 ± 2 g cyclohexane m-3 h-1 (RE: 86 ± 6 %; EBRT: 163 s) and 6.2 ± 0.9 g hexane m-3 h-1 (RE: 96 ± 4 %; EBRT: 245 s). Microbial analysis showed that despite having different inocula, the genera Rhodococcus, Mycobacterium and/or Pseudonocardia dominated in all BFs but at different relative abundances. This study provides new insights into the removal of difficult-to-degrade VOC mixtures with limited research to date on biofiltration.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Filtração/métodos , Hexanos , Biodegradação Ambiental , Cicloexanos , Tolueno , Poluentes Atmosféricos/análise , Reatores Biológicos/microbiologia
5.
J Environ Manage ; 345: 118825, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37634402

RESUMO

Acid bioleaching of Al by Acidithiobacillus thiooxidans has been explored as an environmentally friendly pretreatment to facilitate the extraction of platinum group metals from spent three-way catalysts (TWC). Biogenic sulfur obtained from desulfurization bioreactors improved the production of acid by A. thiooxidans compared to commercially available elemental sulfur. The lixiviation abilities of bacteria-free biogenic acid and biogenic acid with exponential or stationary phase bacteria were compared against a control batch produced by commercial H2SO4. The maximum Al leaching percentage (54.5%) was achieved using biogenic acids with stationary-phase bacteria at a TWC pulp density of 5% w/v whereas bacteria-free biogenic acid (23.4%), biogenic acid with exponential phase bacteria (21.7%) and commercial H2SO4 (24.7%) showed lower leaching abilities. The effect of different pulp densities of ground TWC (5, 30, and 60% w/v) on Al leaching and bacterial growth was determined. While greater Al leaching yields were obtained at lower TWC pulp density solutions (54.5% at 5% w/v and 2.5% at 60% w/v), higher pulp densities enhanced microbial growth (2.3 × 109 cells/mL at 5% w/v and 9.5 × 1010 cells/mL at 60% w/v). The dissolution of the metal from the solid into the liquid phase triggered the production of biological polymeric substances that were able to absorb traces of both Al (up to 24.80% at 5% w/v) and Pt (up to 0.40% at 60% w/v).


Assuntos
Acidithiobacillus , Platina , Acidithiobacillus thiooxidans , Catálise , Enxofre
6.
Bioengineering (Basel) ; 10(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36829654

RESUMO

A pilot-scale biotrickling filter (BTF) was operated in counter-current flow mode under anoxic conditions, using diluted agricultural digestate as inoculum and as the recirculation medium for the nutrient source. The process was tested on-site at an agricultural fermentation plant, where real biogas was used. The pilot plant was therefore exposed to real process-related fluctuations. The purpose of this research was to attest the validity of the filtration process for use at an industrial-scale by operating the pilot plant under realistic conditions. Neither the use of agricultural digestate as trickling liquid and nor a BTF of this scale have previously been reported in the literature. The pilot plant was operated for 149 days. The highest inlet load was 8.5 gS-H2Sm-3h-1 with a corresponding removal efficiency of 99.2%. The pH remained between 7.5 and 4.6 without any regulation throughout the complete experimental phase. The analysis of the microbial community showed that both anaerobic and anoxic bacteria can adapt to the fluctuating operating conditions and coexist simultaneously, thus contributing to the robustness of the process. The operation of an anoxic BTF with agricultural digestate as the trickling liquid proved to be viable for industrial-scale use.

7.
J Hazard Mater ; 401: 123785, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33113736

RESUMO

Biological desulfurization of biogas has been extensively studied using biotrickling filters (BTFs). However, the accumulation of elemental sulfur (S°) on the packing material limits the use of this technology. To overcome this issue, the use of a continuous stirred tank bioreactor (CSTBR) under anoxic conditions for biogas desulfurization and S° production is proposed in the present study. The effect of the main parameters (stirring speed, N/S molar ratio, hydraulic residence time (HRT) and gas residence time (GRT)) on the bioreactor performance was studied. Under an inlet load (IL) of 100 g S-H2S m-3 h-1 and a GRT of 119 s, the CSTBR optimal operating conditions were 60 rpm, N/S molar ratio of 1.1 and a HRT of 42 h, in which a removal efficiency (RE) and S° production of 98.6 ± 0.4 % and 88 % were obtained, respectively. Under a GRT of 41 s and an IL of 232 g S-H2S m-3 h-1 the maximum elimination capacity (EC) of 166.0 ± 7.2 g S-H2S m-3 h-1 (RE = 71.7 ± 3.1 %) was obtained. A proportional-integral feedback control strategy was successfully applied to the bioreactor operated under a stepped variable IL.


Assuntos
Biocombustíveis , Sulfeto de Hidrogênio , Reatores Biológicos , Desnitrificação , Enxofre
8.
Chemosphere ; 254: 126738, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32339799

RESUMO

Biofiltration is a typical air pollution control process for the treatment of volatile organic compounds (VOCs). Mass transfer of hydrophobic VOCs to the biofilm is limited which leads to low removal efficiency (RE). Aiming to enhance the transport of hydrophobic VOCs, the effect of hydrophobic fumed silica (HFS) addition to a biofilter (BF) for pentane removal was studied in this paper. The effect of HFS on pentane removal was evaluated by daily RE measurements and periodical headspace gas pentane pulse injections using SIFT-MS as analysis apparatus. The BF was operated during more than 100 days at an empty bed residence time (EBRT) of 120 s reaching an elimination capacity (EC) up to 93.8 g pentane m-3 h-1. At the last stage of the study, when a higher nutrient pulse and HFS to a concentration of 1.5% w/w wet were added, the BF showed better EC (46.3 ± 14.9 g pentane m-3 h-1; RE = 96.2%) compared to the previous stages (28.3 ± 4.4 g pentane m-3 h-1; RE = 68.3%). This overall performance improvement was in line with the short peak perturbation experiments carried out during the operational time which demonstrated, by net retention time (NRT) determination, to be a fast and reliable tool to gain insights into the behaviour of pollutants inside the BF and its state. Pentane demonstrated to have larger interactions with the packing material when HFS was added. NRT/EBRT ratio variated along the whole operational time, being larger at the last stage.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Filtração/métodos , Pentanos/isolamento & purificação , Dióxido de Silício/farmacologia , Compostos Orgânicos Voláteis/isolamento & purificação , Poluentes Atmosféricos/análise , Biodegradação Ambiental , Biofilmes , Filtração/instrumentação , Interações Hidrofóbicas e Hidrofílicas , Compostos Orgânicos Voláteis/análise
9.
Electrophoresis ; 38(18): 2313-2322, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28466533

RESUMO

High sugar consumption elicits numerous deleterious effects on health by inducing insulin resistance, which is closely associated with the development of metabolic disorders such as obesity or type-2 diabetes. Furthermore, there is also growing evidence that caffeine may play an important role in the regulation of insulin release and the appearance of related metabolic impairments. Thus, the aim of this work was to investigate the impact of acute sugar and caffeine intake on the metabolic health status by using a metabolomic multi-platform based on the combination of flow injection mass spectrometry and ultra-high performance liquid chromatography mass spectrometry. To this end, we performed a randomized, crossover and double-blind intervention study with different soft drinks from the same brand. Numerous metabolomic changes were detected in serum samples over time after the intake of sugar-sweetened beverages, including energy-related metabolites, amino acids and lipids, thus demonstrating the intense effects provoked by acute sugar consumption on the organism during 3 h of follow-up. However, the most significant findings were observed after the co-ingestion of caffeine, which could be indicative of a synergic effect of this psychostimulant on insulin-mediated perturbations.


Assuntos
Cafeína/farmacologia , Sacarose Alimentar/farmacologia , Insulina/sangue , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Adulto , Glicemia/análise , Glicemia/metabolismo , Cafeína/metabolismo , Bebidas Gaseificadas/efeitos adversos , Cromatografia Líquida de Alta Pressão , Estudos Cross-Over , Sacarose Alimentar/metabolismo , Sinergismo Farmacológico , Humanos , Insulina/metabolismo , Masculino , Análise de Componente Principal , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Edulcorantes/metabolismo , Edulcorantes/farmacologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA