Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Braz J Microbiol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825649

RESUMO

An increasing number of microorganisms are being identified to enhance plant growth and inhibit phytopathogens. Some Cladosporium species form beneficial associations with plants, either as endophytes or by colonizing the rhizosphere. Herein, we evaluated the influence of the Cladosporium psychrotolerans (T01 strain) fungus on the in vitro growth of Arabidopsis thaliana plantlets through direct and split interactions. After 9 days post-inoculation with C. psychrotolerans, Arabidopsis plantlets exhibited a notable increase in fresh weight and lateral roots, particularly in split interactions. Chlorophyll content increased in both plant-fungus interaction conditions, whereas the primary root was inhibited during direct interaction. We observed an increase in the GUS signal from the Arabidopsis auxin-inducible DR5:uidA marker in lateral root tips in both contact and split fungal interactions, and primary root tips in a split interaction. Arabidopsis and tomato plants cultivated in soil pots and inoculated with C. psychrotolerans (T01 strain) showed a positive effect on biomass production. GC/MS analysis detected that the T01 strain emitted volatile organic compounds (VOCs), predominantly alcohols and aldehydes. These VOCs displayed potent inhibitory effects, with a 60% inhibition against Botrytis cinerea and a 50% inhibition against C. gloeosporioides. Our study demonstrates that C. psychrotolerans T01 has the potential to enhance biomass production and inhibit pathogens, making it a promising candidate for green technology applications.

2.
Planta ; 259(3): 53, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294549

RESUMO

MAIN CONCLUSION: The biostimulant Hanseniaspora opuntiae regulates Arabidopsis thaliana root development and resistance to Botrytis cinerea. Beneficial microbes can increase plant nutrient accessibility and uptake, promote abiotic stress tolerance, and enhance disease resistance, while pathogenic microorganisms cause plant disease, affecting cellular homeostasis and leading to cell death in the most critical cases. Commonly, plants use specialized pattern recognition receptors to perceive beneficial or pathogen microorganisms. Although bacteria have been the most studied plant-associated beneficial microbes, the analysis of yeasts is receiving less attention. This study assessed the role of Hanseniaspora opuntiae, a fermentative yeast isolated from cacao musts, during Arabidopsis thaliana growth, development, and defense response to fungal pathogens. We evaluated the A. thaliana-H. opuntiae interaction using direct and indirect in vitro systems. Arabidopsis growth was significantly increased seven days post-inoculation with H. opuntiae during indirect interaction. Moreover, we observed that H. opuntiae cells had a strong auxin-like effect in A. thaliana root development during in vitro interaction. We show that 3-methyl-1-butanol and ethanol are the main volatile compounds produced by H. opuntiae. Subsequently, it was determined that A. thaliana plants inoculated with H. opuntiae have a long-lasting and systemic effect against Botrytis cinerea infection, but independently of auxin, ethylene, salicylic acid, or jasmonic acid pathways. Our results demonstrate that H. opuntiae is an important biostimulant that acts by regulating plant development and pathogen resistance through different hormone-related responses.


Assuntos
Arabidopsis , Botrytis , Hanseniaspora , Ácidos Indolacéticos
3.
Plants (Basel) ; 12(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447005

RESUMO

During plant interaction with beneficial microorganisms, fungi secrete a battery of elicitors that trigger plant defenses against pathogenic microorganisms. Among the elicitor molecules secreted by Trichoderma are cerato-platanin proteins, such as EPL1, from Trichoderma atroviride. In this study, Arabidopsis thaliana plants that express the TaEPL1 gene were challenged with phytopathogens to evaluate whether expression of EPL1 confers increased resistance to the bacterial pathogen Pseudomonas syringae and the necrotrophic fungus Botrytis cinerea. Infection assays showed that Arabidopsis EPL1-2, EPL1-3, EPL1-4 expressing lines were more resistant to both pathogens in comparison to WT plants. After Pseudomonas syringae infection, there were reduced disease symptoms (e.g., small chlorotic spots) and low bacterial titers in the three 35S::TaEPL1 expression lines. Similarly; 35S::TaEPL1 expression lines were more resistant to Botrytis cinerea infection, showing smaller lesion size in comparison to WT. Interestingly, an increase in ROS levels was detected in 35S::TaEPL1 expression lines when compared to WT. A higher expression of SA- and JA-response genes occurred in the 35S::TaEPL1 lines, which could explain the resistance of these EPL1 expression lines to both pathogens. We propose that EPL1 is an excellent elicitor, which can be used to generate crops with improved resistance to broad-spectrum diseases.

4.
Plant Physiol Biochem ; 176: 34-43, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217328

RESUMO

Species of the entomopathogenic fungi Metarhizium are used worldwide as biocontrol agents. Recently, other lifestyles have been associated with some Metarhizium species, which include their role as saprophytes, endophytes, and plant growth promoters. Herein, the effect of three Metarhizium anisopliae strains on the growth of Arabidopsis thaliana plantlets was evaluated using an in vitro split system. Arabidopsis fresh weight and total chlorophyll content significantly increased 7 days post-inoculation with the three Metarhizium anisopliae strains evaluated. The primary root length was promoted by all fungal strains without physical contact, whereas in direct contact primary root growth was inhibited. Volatile organic compounds identification revealed that during the interaction of Arabidopsis with Ma-20 and Ma-25 strains only ß-caryophyllene was produced, whereas in the Arabidopsis-Ma-28 interaction o-cymene was mainly emitted. The plant growth promoting effect induced by Metarhizium anisopliae strains was also achieved in Arabidopsis, tomato and maize plants grown in soil pots. Our results showed that three Metarhizium anisopliae strains were able to increase plant fresh weight, opening promising perspectives for field production, with the advantages of insect biocontrol and plant growth promotion induced by this species of fungus.


Assuntos
Arabidopsis , Metarhizium , Solanum lycopersicum , Endófitos , Zea mays
5.
Sci Rep ; 8(1): 16427, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401880

RESUMO

Trichoderma spp colonizes the plant rhizosphere and provides pathogen resistance, abiotic stress tolerance, and enhance growth and development. We evaluated the Arabidopsis-Trichoderma interaction using a split system in which Trichoderma atroviride and Trichoderma virens were grown on PDA or MS medium. Arabidopsis growth was significantly increased at 3 and 5 days post-inoculation with both Trichoderma species, when the fungal strains were grown on PDA in split interaction. The analysis of DR5:uidA reporter line revealed a greater auxin accumulation in root tips when the fungi were grown on PDA in a split interaction. The root hair-defective phenotype of Arabidopsis rhd6 mutant was reverted with both Trichoderma species, even in split interactions. At 12 °C, Trichoderma species in split interactions were able to mitigate the effects of cold stress on the plant, and also Trichoderma induced the AtERD14 expression, a cold related gene. Volatile organic compounds analysis revealed that Trichoderma strains produce mainly sesquiterpenes, and that the type and abundance of these compounds was dependent on the fungal strain and the culture medium. Our results show that fungal nutrition is an important factor in plant growth in a split interaction.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Meios de Cultura/farmacologia , Interações Hospedeiro-Patógeno , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Trichoderma/fisiologia , Compostos Orgânicos Voláteis/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/microbiologia , Compostos Orgânicos Voláteis/análise
6.
Rev. cuba. oftalmol ; 3(2): 158-66, mayo-ago. 1990. tab
Artigo em Espanhol | LILACS | ID: lil-112062

RESUMO

Motivados por la necesidad de conocer el comportamiento de la sepsis en nuestro servicio, la repercusión económica hospitalaria de la sepsis nosocomial y los factores predisponentes a éste, se realiza una investigación con carácter prospectivo que contempla el siguiente diseño: a)Toma de cultivo de secreción ocular a todos los pacientes que ingesen con una sepsis extrahospitalaria y antes de iniciar tratamiento con antibióticos. Además, toma de cultivo ótico y faríngeo. b) Toma de cultivo ocular y una muestra aleatoria de pacientes que ingresen sin sepsis ocular y de éstos a los positivos; se tomó cultivo ótico y faríngeo antes de iniciar tratamiento alguno. c) Toma de cultivo de instrumental de curación, manos de personal médico, enfermeros, auxiliares y pantristas. d) Se constata en nuestro estudio un bajo índice de infección intrahospitalaria. Se obtiene la repercusión económica que que esto significa. e) Se expresa además la contaminación hallada en el control microbiológico de instrumental, manos del personal y material de curaciones utilizado, así como su relación con la sepsis nosocomial


Assuntos
Infecção Hospitalar , Meios de Cultura/isolamento & purificação , Oftalmologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA