Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Genet ; 14(8): e1007572, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089114

RESUMO

Centromere is a specialized chromatin domain that plays a vital role in chromosome segregation. In most eukaryotes, centromere is surrounded by the epigenetically distinct heterochromatin domain. Heterochromatin has been shown to contribute to centromere function, but the precise role of heterochromatin in centromere specification remains elusive. Centromeres in most eukaryotes, including fission yeast (Schizosaccharomyces pombe), are defined epigenetically by the histone H3 (H3) variant CENP-A. In contrast, the budding yeast Saccharomyces cerevisiae has genetically-defined point centromeres. The transition between regional centromeres and point centromeres is considered as one of the most dramatic evolutionary events in centromere evolution. Here we demonstrated that Cse4, the budding yeast CENP-A homolog, can localize to centromeres in fission yeast and partially substitute fission yeast CENP-ACnp1. But overexpression of Cse4 results in its localization to heterochromatic regions. Cse4 is subject to efficient ubiquitin-dependent degradation in S. pombe, and its N-terminal domain dictates its centromere distribution via ubiquitination. Notably, without heterochromatin and RNA interference (RNAi), Cse4 fails to associate with centromeres. We showed that RNAi-dependent heterochromatin mediates centromeric localization of Cse4 by protecting Cse4 from ubiquitin-dependent degradation. Heterochromatin also contributes to the association of native CENP-ACnp1 with centromeres via the same mechanism. These findings suggest that protection of CENP-A from degradation by heterochromatin is a general mechanism used for centromere assembly, and also provide novel insights into centromere evolution.


Assuntos
Proteína Centromérica A/metabolismo , Centrômero/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Heterocromatina/genética , Interferência de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Variação Genética , Histonas/genética , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitinação
2.
Mol Cell ; 64(1): 79-91, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27666591

RESUMO

CENP-A is a centromere-specific histone 3 variant essential for centromere specification. CENP-A partially replaces canonical histone H3 at the centromeres. How the particular CENP-A/H3 ratio at centromeres is precisely maintained is unknown. It also remains unclear how CENP-A is excluded from non-centromeric chromatin. Here, we identify Ccp1, an uncharacterized NAP family protein in fission yeast that antagonizes CENP-A loading at both centromeric and non-centromeric regions. Like the CENP-A loading factor HJURP, Ccp1 interacts with CENP-A and is recruited to centromeres at the end of mitosis in a Mis16-dependent manner. These data indicate that factors with opposing CENP-A loading activities are recruited to centromeres. Furthermore, Ccp1 also cooperates with H2A.Z to evict CENP-A assembled in euchromatin. Structural analyses indicate that Ccp1 forms a homodimer that is required for its anti-CENP-A loading activity. Our study establishes mechanisms for maintenance of CENP-A homeostasis at centromeres and the prevention of ectopic assembly of centromeres.


Assuntos
Carboxipeptidases/genética , Proteínas de Transporte/genética , Proteínas Cromossômicas não Histona/genética , Eucromatina/química , Regulação Fúngica da Expressão Gênica , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Sítios de Ligação , Carboxipeptidases/química , Carboxipeptidases/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Centrômero/química , Centrômero/metabolismo , Centrômero/ultraestrutura , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Eucromatina/metabolismo , Eucromatina/ultraestrutura , Histonas/química , Histonas/genética , Histonas/metabolismo , Mitose , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais
3.
Genetics ; 198(4): 1433-46, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25298518

RESUMO

The centromere is a specific chromosomal locus that organizes the assembly of the kinetochore. It plays a fundamental role in accurate chromosome segregation. In most eukaryotic organisms, each chromosome contains a single centromere the position and function of which are epigenetically specified. Occasionally, centromeres form at ectopic loci, which can be detrimental to the cell. However, the mechanisms that protect the cell against ectopic centromeres (neocentromeres) remain poorly understood. Centromere protein-A (CENP-A), a centromere-specific histone 3 (H3) variant, is found in all centromeres and is indispensable for centromere function. Here we report that the overexpression of CENP-A(Cnp1) in fission yeast results in the assembly of CENP-A(Cnp1) at noncentromeric chromatin during mitosis and meiosis. The noncentromeric CENP-A preferentially assembles near heterochromatin and is capable of recruiting kinetochore components. Consistent with this, cells overexpressing CENP-A(Cnp1) exhibit severe chromosome missegregation and spindle microtubule disorganization. In addition, pulse induction of CENP-A(Cnp1) overexpression reveals that ectopic CENP-A chromatin can persist for multiple generations. Intriguingly, ectopic assembly of CENP-A(cnp1) is suppressed by overexpression of histone H3 or H4. Finally, we demonstrate that deletion of the N-terminal domain of CENP-A(cnp1) results in an increase in the number of ectopic CENP-A sites and provide evidence that the N-terminal domain of CENP-A prevents CENP-A assembly at ectopic loci via the ubiquitin-dependent proteolysis. These studies expand our current understanding of how noncentromeric chromatin is protected from mistakenly assembling CENP-A.


Assuntos
Autoantígenos/genética , Autoantígenos/metabolismo , Centrômero/genética , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Autoantígenos/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteína Centromérica A , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/química , Segregação de Cromossomos , Expressão Gênica , Genes Reporter , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Cinetocoros/metabolismo , Meiose , Mitose , Domínios e Motivos de Interação entre Proteínas , Proteólise , Fuso Acromático/metabolismo , Ubiquitina/metabolismo
4.
Protein Cell ; 5(6): 411-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24691906

RESUMO

Genetic information stored in DNA is accurately copied and transferred to subsequent generations through DNA replication. This process is accomplished through the concerted actions of highly conserved DNA replication components. Epigenetic information stored in the form of histone modifications and DNA methylation, constitutes a second layer of regulatory information important for many cellular processes, such as gene expression regulation, chromatin organization, and genome stability. During DNA replication, epigenetic information must also be faithfully transmitted to subsequent generations. How this monumental task is achieved remains poorly understood. In this review, we will discuss recent advances on the role of DNA replication components in the inheritance of epigenetic marks, with a particular focus on epigenetic regulation in fission yeast. Based on these findings, we propose that specific DNA replication components function as key regulators in the replication of epigenetic information across the genome.


Assuntos
Centrômero/metabolismo , DNA Fúngico/metabolismo , Schizosaccharomyces/metabolismo , Proteínas Cdc20/antagonistas & inibidores , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Epigênese Genética , Histonas/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(2): 606-11, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23267073

RESUMO

Centromeric histone CENP-A, a variant of canonical histone H3, plays a central role in proper chromosome segregation. Loading of CENP-A at centromeres is cell cycle-regulated: parental CENP-A is deposited at centromeres during S phase, whereas newly synthesized CENP-A is deposited during later stages of the cell cycle. The mechanisms involved in deposition of CENP-A at centromeres during S phase remain poorly understood. In fission yeast, loading of CENP-A during S phase is regulated by the GATA-type factor, Ams2. Here we show that the Dos1/2-Cdc20 complex, previously characterized as a silencing complex essential for inheritance of H3K9 methylation during S phase, is also required for localization of CENP-A(cnp1) at centromeres at this stage. Disruption of Dos1 (also known as Raf1/Clr8/Cmc1), Dos2 (also known as Raf2/Clr7/Cmc2), or Cdc20, a DNA polymerase epsilon subunit, results in dissociation of CENP-A from centromeres and mislocalization of the protein to noncentromeric sites. All three mutants display spindle disorganization and mitotic defects. Inactivation of Dos1 or Cdc20 also results in accumulation of noncoding RNA transcripts from centromeric cores, a feature common to mutants affecting kinetochore integrity. We further find that Dos1 physically associates with Ams2 and is required for the association of Ams2 with centromeric cores during S phase. Finally, we show that Dos2 associates with centromeric cores during S phase and that its recruitment to centromeric cores depends on Cdc20. This study identifies a physical link between DNA replication and CENP-A assembly machinery and provides mechanistic insight into how CENP-A is faithfully inherited during S phase.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Complexos Multiproteicos/metabolismo , Fase S/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas Cdc20 , Centrômero/metabolismo , Proteína Centromérica A , Imunoprecipitação da Cromatina , Segregação de Cromossomos/genética , Primers do DNA/genética , Fatores de Transcrição GATA/metabolismo , Imunoprecipitação , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Schizosaccharomyces/genética
6.
Epigenetics ; 7(1): 14-9, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22207359

RESUMO

Epigenetic marks, such as histone methylation, play a central role in chromatin structure and gene expression. During DNA replication, chromatin undergoes a wave of disruption and reassembly. Little is known about how the epigenetic marks are faithfully inherited from one generation to the next. In fission yeast, the hallmark of heterochromatin, a condensed chromatin structure, is H3K9 methylation. This conserved epigenetic mark is mediated by small interference RNAs (siRNAs) in a cell cycle-dependent manner: at S phase, heterochromatin is briefly transcribed by RNAP II and the transcripts are subsequently processed into siRNAs. These small RNAs, together with other key silencing factors, including Dos1/Raf1/Clr8/Cmc1, Dos2/Raf2/Clr7/Cmc2 and Rik1, mediate H3K9 methylation by the histone H3K9 methyltransferase Clr4. Our recent findings indicate that the ε subunit of DNA polymerase, Cdc20, associates with the Dos2-Rik1 complex and is essential for H3K9 methylation and heterochromatin function. Moreover, Cdc20 regulates siRNA generation by promoting RNAP II transcription of heterochromatin. These data suggest that DNA polymerase components may play a key role in the inheritance of histone methylation by coordinating DNA replication, RNAi and histone methylation, and explain previously observed cell cycle-regulated RNAi-dependent heterochromatin silencing. We propose a model in which, at DNA replication forks, DNA polymerase subunits mediate the recruitment of epigenetic factors required for RNAi and histone modification to heterochromatin to promote the faithful transmission of histone methylation.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Epigênese Genética , Interferência de RNA , Schizosaccharomyces/genética , Animais , Heterocromatina/metabolismo , Humanos , Plantas/genética
7.
Yeast ; 27(8): 583-96, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20602336

RESUMO

Many of the genes and enzymes critical for assembly and biogenesis of yeast cell walls remain unidentified or poorly characterized. Therefore, we designed a high throughput genomic screen for defects in anchoring of GPI-cell wall proteins (GPI-CWPs), based on quantification of a secreted GFP-Sag1p fusion protein. Saccharomyces cerevisiae diploid deletion strains were transformed with a plasmid expressing the fusion protein under a GPD promoter, then GFP fluorescence was determined in culture supernatants after mid-exponential growth. Variability in the amount of fluorescent marker secreted into the medium was reduced by growth at 18 degrees C in buffered defined medium in the presence of sorbitol. Secondary screens included immunoblotting for GFP, fluorescence emission spectra, cell surface fluorescence, and cell integrity. Of 167 mutants deleted for genes affecting cell wall biogenesis or structure, eight showed consistent hyper-secretion of GFP relative to parental strain BY4743: tdh3 (glyceraldehyde-3-phosphate dehydrogenase), gda1 (guanosine diphosphatase), gpi13 and mcd4 (both ethanolamine phosphate-GPI-transferases), kre5 and kre1 (involved in synthesis of beta1,6 glucan), dcw1(implicated in GPI-CWP cross-linking to cell wall glucan), and cwp1 (a major cell wall protein). In addition, deletion of a number of genes caused decreased secretion of GFP. These results elucidate specific roles for specific genes in cell wall biogenesis, including differentiating among paralogous genes.


Assuntos
Parede Celular/metabolismo , Glicoproteínas/metabolismo , Glicosilfosfatidilinositóis/deficiência , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fusão Gênica Artificial , Parede Celular/genética , Genes Reporter , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA