Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36986985

RESUMO

Fresh-cut produce have become widely popular, increasing vegetable consumption in many parts of the word. However, they are more perishable than unprocessed fresh vegetables, requiring cold storage to preserve their quality and palatability. In addition to cold storage, UV radiation has been used experimentally to try to increase nutritional quality and postharvest shelf life, revealing increased antioxidant levels in some fruits and vegetables, including orange carrots. Carrot is one of the main whole and fresh-cut vegetables worldwide. In addition to orange carrots, other root color phenotypes (e.g., purple, yellow, red) are becoming increasingly popular in some markets. The effect of the UV radiation and cold storage has not been explored in these root phenotypes. This study investigated the effect of postharvest UV-C radiation in whole and fresh-cut (sliced and shredded) roots of two purple, one yellow, and one orange-rooted cultivar, with regard to changes in concentration of total phenolics (TP) and hydroxycinnamic acids (HA), chlorogenic acid (CGA), total and individual anthocyanins, antioxidant capacity (by DPPH and ABTS), and superficial color appearance, monitoring such changes during cold storage. Results revealed that the UV-C radiation, the fresh-cut processing, and the cold storage influenced the content of antioxidant compounds and activities to varying extents, depending on the carrot cultivar, the degree of processing, and the phytochemical compound analyzed. UV-C radiation increased antioxidant capacity up to 2.1, 3.8, 2.5-folds; TP up to 2.0, 2.2, and 2.1-folds; and CGA up to 3.2, 6.6, and 2.5-folds, relative to UV-C untreated controls, for orange, yellow, and purple carrots, respectively. Anthocyanin levels were not significantly modified by the UV-C in both purple carrots evaluated. A moderate increase in tissue browning was found in some fresh-cut processed UV-C treated samples of yellow and purple but not orange roots. These data suggest variable potential for increasing functional value by UV-C radiation in different carrot root colors.

2.
Food Chem ; 387: 132893, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35397275

RESUMO

As a means to evaluate the potential of carrot anthocyanins as food colorants and nutraceutical agents, we investigated the physicochemical stability and antioxidant capacity of purple carrot extracts under different pH (2.5-7.0) and temperature (4-40 °C) conditions, in comparison to a commercial synthetic (E131) and a natural grape-based (GRP) colorant. During incubation, the colorants were weekly-monitored for various color parameters, concentration of anthocyanins and phenolics, and antioxidant capacity. Carrot colorants were more stable than GRP; and their thermal stability was equal (at 4 °C) or higher than that of E131 (at 25-40 °C). Carrot anthocyanins had lower degradation rate at low pH and temperature, with acylated anthocyanins (AA) being significantly more stable than non-acylated anthocyanins (NAA). Anthocyanins acylated with feruloyl and coumaroyl glycosides were the most stable carrot pigments. The higher stability of carrot colorants is likely due to their richness in AA and -to a lesser extent- copigmentation with other phenolics.


Assuntos
Daucus carota , Corantes de Alimentos , Antocianinas/química , Antioxidantes/metabolismo , Cor , Daucus carota/química , Corantes de Alimentos/química , Cinética , Fenóis/metabolismo , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA