Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Toxicol ; 54(3): 194-213, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470098

RESUMO

Neonicotinoid pesticides are utilized against an extensive range of insects. A growing body of evidence supports that these neuro-active insecticides are classified as toxicants in invertebrates. However, there is limited published data regarding their toxicity in vertebrates and mammals. the current systematic review is focused on the up-to-date knowledge available for several neonicotinoid pesticides and their non-acute toxicity on rodents and human physiology. Oral lethal dose 50 (LD50) of seven neonicotinoids (i.e. imidacloprid, acetamiprid, clothianidin, dinotefuran, thiamethoxam, thiacloprid, and nitenpyram) was initially identified. Subsequently, a screening of the literature was conducted to collect information about non-acute exposure to these insecticides. 99 studies were included and assessed for their risk of bias and level of evidence according to the Office of Health and Translation (OHAT) framework. All the 99 included papers indicate evidence of reproductive toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, immunotoxicity, and oxidative stress induction with a high level of evidence in the health effect of rodents and a moderate level of evidence for human health. The most studied type of these insecticides among 99 papers was imidacloprid (55 papers), followed by acetamiprid (22 papers), clothianidin (21 papers), and thiacloprid (11 papers). While 10 of 99 papers assessed the relationship between clothianidin, thiamethoxam, dinotefuran, and nitenpyram, showing evidence of liver injury, dysfunctions of oxidative stress markers in the reproductive system, and intestinal toxicity. This systematic review provides a comprehensive overview of the potential risks caused by neonicotinoid insecticides to humans and rodents with salient health effects. However, further research is needed to better emphasize and understand the patho-physiological mechanisms of these insecticides, taking into account various factors that can influence their toxicity.


Assuntos
Guanidinas , Inseticidas , Tiazinas , Tiazóis , Animais , Humanos , Tiametoxam , Inseticidas/toxicidade , Oxazinas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Medição de Risco , Mamíferos
2.
J Trace Elem Med Biol ; 32: 168-76, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26302925

RESUMO

Copper is essential for several important cellular processes, but an excess of copper can also lead to oxidative damage. In brain, astrocytes are considered to play a pivotal role in the copper homeostasis and antioxidative defence. To investigate whether antioxidants and copper chelators can modulate the uptake and the toxicity of copper ions in brain astrocytes, we used primary astrocytes as cell culture model. These cells accumulated substantial amounts of copper during exposure to copper chloride. Copper accumulation was accompanied by a time- and concentration-dependent loss in cell viability, as demonstrated by a lowering in cellular MTT reduction capacity and by an increase in membrane permeability for propidium iodide. During incubations in the presence of the antioxidants ascorbate, trolox or ebselen, the specific cellular copper content and the toxicity in copper chloride-treated astrocyte cultures were strongly increased. In contrast, the presence of the copper chelators bathocuproine disulfonate or tetrathiomolybdate lowered the cellular copper accumulation and the copper-induced as well as the ascorbate-accelerated copper toxicity was fully prevented. These data suggest that predominantly the cellular content of copper determines copper-induced toxicity in brain astrocytes.


Assuntos
Antioxidantes/farmacologia , Astrócitos/metabolismo , Encéfalo/citologia , Quelantes/farmacologia , Cobre/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA