Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Alzheimers Dement ; 20(2): 1298-1308, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985413

RESUMO

INTRODUCTION: Genome-wide association studies (GWAS) are fundamental for identifying loci associated with diseases. However, they require replication in other ethnicities. METHODS: We performed GWAS on sporadic Alzheimer's disease (AD) including 539 patients and 854 controls from Argentina and Chile. We combined our results with those from the European Alzheimer and Dementia Biobank (EADB) in a meta-analysis and tested their genetic risk score (GRS) performance in this admixed population. RESULTS: We detected apolipoprotein E ε4 as the single genome-wide significant signal (odds ratio  = 2.93 [2.37-3.63], P = 2.6 × 10-23 ). The meta-analysis with EADB summary statistics revealed four new loci reaching GWAS significance. Functional annotations of these loci implicated endosome/lysosomal function. Finally, the AD-GRS presented a similar performance in these populations, despite the score diminished when the Native American ancestry rose. DISCUSSION: We report the first GWAS on AD in a population from South America. It shows shared genetics modulating AD risk between the European and these admixed populations. HIGHLIGHTS: This is the first genome-wide association study on Alzheimer's disease (AD) in a population sample from Argentina and Chile. Trans-ethnic meta-analysis reveals four new loci involving lysosomal function in AD. This is the first independent replication for TREM2L, IGH-gene-cluster, and ADAM17 loci. A genetic risk score (GRS) developed in Europeans performed well in this population. The higher the Native American ancestry the lower the GRS values.


Assuntos
Doença de Alzheimer , Azidas , Estudo de Associação Genômica Ampla , Humanos , Chile , Doença de Alzheimer/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética
2.
Mol Ther ; 31(7): 2240-2256, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016577

RESUMO

Alteration in the buffering capacity of the proteostasis network is an emerging feature of Alzheimer's disease (AD), highlighting the occurrence of endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is the main adaptive pathway to cope with protein folding stress at the ER. Inositol-requiring enzyme-1 (IRE1) operates as a central ER stress sensor, enabling the establishment of adaptive and repair programs through the control of the expression of the transcription factor X-box binding protein 1 (XBP1). To artificially enforce the adaptive capacity of the UPR in the AD brain, we developed strategies to express the active form of XBP1 in the brain. Overexpression of XBP1 in the nervous system using transgenic mice reduced the load of amyloid deposits and preserved synaptic and cognitive function. Moreover, local delivery of XBP1 into the hippocampus of an 5xFAD mice using adeno-associated vectors improved different AD features. XBP1 expression corrected a large proportion of the proteomic alterations observed in the AD model, restoring the levels of several synaptic proteins and factors involved in actin cytoskeleton regulation and axonal growth. Our results illustrate the therapeutic potential of targeting UPR-dependent gene expression programs as a strategy to ameliorate AD features and sustain synaptic function.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Estresse do Retículo Endoplasmático/genética , Camundongos Transgênicos , Proteômica , Proteostase/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/genética
3.
Aging (Albany NY) ; 15(19): 9896-9912, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37074814

RESUMO

Dysregulated central-energy metabolism is a hallmark of brain aging. Supplying enough energy for neurotransmission relies on the neuron-astrocyte metabolic network. To identify genes contributing to age-associated brain functional decline, we formulated an approach to analyze the metabolic network by integrating flux, network structure and transcriptomic databases of neurotransmission and aging. Our findings support that during brain aging: (1) The astrocyte undergoes a metabolic switch from aerobic glycolysis to oxidative phosphorylation, decreasing lactate supply to the neuron, while the neuron suffers intrinsic energetic deficit by downregulation of Krebs cycle genes, including mdh1 and mdh2 (Malate-Aspartate Shuttle); (2) Branched-chain amino acid degradation genes were downregulated, identifying dld as a central regulator; (3) Ketone body synthesis increases in the neuron, while the astrocyte increases their utilization, in line with neuronal energy deficit in favor of astrocytes. We identified candidates for preclinical studies targeting energy metabolism to prevent age-associated cognitive decline.


Assuntos
Astrócitos , Metabolismo Energético , Astrócitos/metabolismo , Metabolismo Energético/genética , Transmissão Sináptica , Perfilação da Expressão Gênica , Glucose/metabolismo
4.
Brain Res Bull ; 196: 59-67, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36935053

RESUMO

Astrocytes are active participants in the performance of the Central Nervous System (CNS) in both health and disease. During aging, astrocytes are susceptible to reactive astrogliosis, a molecular state characterized by functional changes in response to pathological situations, and cellular senescence, characterized by loss of cell division, apoptosis resistance, and gain of proinflammatory functions. This results in two different states of astrocytes, which can produce proinflammatory phenotypes with harmful consequences in chronic conditions. Reactive astrocytes and senescent astrocytes share morpho-functional features that are dependent on the organization of the cytoskeleton. However, such changes in the cytoskeleton have yet to receive the necessary attention to explain their role in the alterations of astrocytes that are associated with aging and pathologies. In this review, we summarize all the available findings that connect changes in the cytoskeleton of the astrocytes with aging. In addition, we discuss future avenues that we believe will guide such a novel topic.


Assuntos
Astrócitos , Citoesqueleto , Astrócitos/patologia , Microtúbulos , Sistema Nervoso Central/patologia
5.
J Neurosci ; 43(12): 2037-2052, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36948585

RESUMO

Neuronal polarization is a complex molecular process regulated by intrinsic and extrinsic mechanisms. Nerve cells integrate multiple extracellular cues to generate intracellular messengers that ultimately control cell morphology, metabolism, and gene expression. Therefore, second messengers' local concentration and temporal regulation are crucial elements for acquiring a polarized morphology in neurons. This review article summarizes the main findings and current understanding of how Ca2+, IP3, cAMP, cGMP, and hydrogen peroxide control different aspects of neuronal polarization, and highlights questions that still need to be resolved to fully understand the fascinating cellular processes involved in axodendritic polarization.


Assuntos
Neurônios , Sistemas do Segundo Mensageiro , Neurônios/fisiologia , GMP Cíclico/metabolismo , Polaridade Celular/fisiologia
6.
iScience ; 25(3): 103908, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243260

RESUMO

The gut microbiota influence neurodevelopment, modulate behavior, and contribute to neurodegenerative disorders. Several studies have consistently reported a greater abundance of Akkermansia muciniphila in Parkinson disease (PD) fecal samples. Therefore, we investigated whether A.muciniphila-conditioned medium (CM) could initiate α-synuclein (αSyn) misfolding in enteroendocrine cells (EEC) - a component of the gut epithelium featuring neuron-like properties. We found that A. muciniphila CM composition is influenced by the ability of the strain to degrade mucin. Our in vitro experiments showed that the protein-enriched fraction of mucin-free CM induces RyR-mediated Ca2+ release and increased mitochondrial Ca2+ uptake leading to ROS generation and αSyn aggregation. Oral administration of A. muciniphila cultivated in the absence of mucin to mice led to αSyn aggregation in cholecystokinin (CCK)-positive EECs but no motor deficits were observed. Noteworthy, buffering mitochondrial Ca2+ reverted the damaging effects observed. These molecular insights offer evidence that bacterial proteins can induce αSyn aggregation in EECs.

7.
EMBO J ; 41(2): e105531, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34904718

RESUMO

Recessive gene mutations underlie many developmental disorders and often lead to disabling neurological problems. Here, we report identification of a homozygous c.170G>A (p.Cys57Tyr or C57Y) mutation in the gene coding for protein disulfide isomerase A3 (PDIA3, also known as ERp57), an enzyme that catalyzes formation of disulfide bonds in the endoplasmic reticulum, to be associated with syndromic intellectual disability. Experiments in zebrafish embryos show that PDIA3C57Y expression is pathogenic and causes developmental defects such as axonal disorganization as well as skeletal abnormalities. Expression of PDIA3C57Y in the mouse hippocampus results in impaired synaptic plasticity and memory consolidation. Proteomic and functional analyses reveal that PDIA3C57Y expression leads to dysregulation of cell adhesion and actin cytoskeleton dynamics, associated with altered integrin biogenesis and reduced neuritogenesis. Biochemical studies show that PDIA3C57Y has decreased catalytic activity and forms disulfide-crosslinked aggregates that abnormally interact with chaperones in the endoplasmic reticulum. Thus, rare disease gene variant can provide insight into how perturbations of neuronal proteostasis can affect the function of the nervous system.


Assuntos
Deficiências do Desenvolvimento/genética , Retículo Endoplasmático/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Proteostase , Adolescente , Adulto , Animais , Axônios/metabolismo , Axônios/patologia , Adesão Celular , Células Cultivadas , Criança , Citoesqueleto/metabolismo , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Crescimento Neuronal , Plasticidade Neuronal , Linhagem , Isomerases de Dissulfetos de Proteínas/metabolismo , Peixe-Zebra
8.
Brain Res ; 1775: 147742, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34848172

RESUMO

Epidemiological studies demonstrate that arsenic exposure is associated with cognitive dysfunction. Experimental arsenic exposure models showed learning and memory deficits and molecular changes resembling the functional and pathologic neurodegeneration features. The present work focuses on hippocampal pathological changes in Wistar rats induced by continuous arsenic exposure from in utero up to 12 months of age, evaluated by magnetic resonance imaging along with immunohistochemistry. Diffusion-weighted images revealed age-related lower fractional anisotropy and higher radial-axial and mean diffusivity at 6 and 12 months, indicating that arsenic exposure leads to hippocampal demyelination. These structural alterations were paralleled by immunohistochemical changes that showed a significant loss of myelin basic protein in CA1 and CA3 regions accompanied by increased glial fibrillary acidic protein expression at all time-points studied. Concomitantly, arsenic exposure induced an altered morphology of astrocytes at all studied ages, whereas increased synaptogenesis was only observed at two months of age. These results suggest that environmental arsenic exposure is linked to impaired hippocampal connectivity and perhaps early glial senescence, which together might resemble a premature aging phenomenon leading to cognitive deficits.


Assuntos
Arsênio/farmacologia , Astrócitos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Substância Branca/efeitos dos fármacos , Animais , Astrócitos/citologia , Forma Celular/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Wistar , Substância Branca/citologia , Substância Branca/diagnóstico por imagem
9.
Oxid Med Cell Longev ; 2021: 5586052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950417

RESUMO

Brain aging is characterized by several molecular and cellular changes grouped as the hallmarks or pillars of aging, including organelle dysfunction, metabolic and nutrition-sensor changes, stem cell attrition, and macromolecular damages. Separately and collectively, these features degrade the most critical neuronal function: transmission of information in the brain. It is widely accepted that aging is the leading risk factor contributing to the onset of the most prevalent pathological conditions that affect brain functions, such as Alzheimer's, Parkinson's, and Huntington's disease. One of the limitations in understanding the molecular mechanisms involved in those diseases is the lack of an appropriate cellular model that recapitulates the "aged" context in human neurons. The advent of the cellular reprogramming of somatic cells, i.e., dermal fibroblasts, to obtain directly induced neurons (iNs) and induced pluripotent stem cell- (iPSC-) derived neurons is technical sound advances that could open the avenues to understand better the contribution of aging toward neurodegeneration. In this review, we will summarize the commonalities and singularities of these two approaches for the study of brain aging, with an emphasis on the role of mitochondrial dysfunction and redox biology. We will address the evidence showing that iNs retain age-related features in contrast to iPSC-derived neurons that lose the aging signatures during the reprogramming to pluripotency, rendering iNs a powerful strategy to deepen our knowledge of the processes driving normal cellular function decline and neurodegeneration in a human adult model. We will finally discuss the potential utilization of these novel technologies to understand the differential contribution of genetic and epigenetic factors toward neuronal aging, to identify and develop new drugs and therapeutic strategies.


Assuntos
Reprogramação Celular , Metabolismo Energético , Envelhecimento Saudável , Células-Tronco Pluripotentes Induzidas/citologia , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Neurônios/citologia , Humanos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo
11.
J Neurochem ; 158(3): 673-693, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107066

RESUMO

Dendritic spines are small, actin-rich protrusions that act as the receiving sites of most excitatory inputs in the central nervous system. The remodeling of the synapse architecture is mediated by actin cytoskeleton dynamics, a process precisely regulated by the small Rho GTPase family. Wnt ligands exert their presynaptic and postsynaptic effects during formation and consolidation of the synaptic structure. Specifically, Wnt5a has been identified as an indispensable synaptogenic factor for the regulation and organization of the postsynaptic side; however, the molecular mechanisms through which Wnt5a induces morphological changes resulting from actin cytoskeleton dynamics within dendritic spines remain unclear. In this work, we employ primary rat hippocampal cultures and HT22 murine hippocampal neuronal cell models, molecular and pharmacological tools, and fluorescence microscopy (laser confocal and epifluorescence) to define the Wnt5a-induced molecular signaling involved in postsynaptic remodeling mediated via the regulation of the small Rho GTPase family. We report that Wnt5a differentially regulates the phosphorylation of Cofilin in neurons through both Ras-related C3 botulinum toxin substrate 1 and cell division cycle 42 depending on the subcellular compartment and the extracellular calcium levels. Additionally, we demonstrate that Wnt5a increases the density of dendritic spines and promotes their maturation via Ras-related C3 botulinum toxin substrate 1. Accordingly, we find that Wnt5a requires the combined activation of small Rho GTPases to increase the levels of filamentous actin, thus promoting the stability of actin filaments. Altogether, these results provide evidence for a new mechanism by which Wnt5a may target actin dynamics, thereby regulating the subsequent morphological changes in dendritic spine architecture.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Proteína Wnt-5a/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Fatores de Despolimerização de Actina/análise , Animais , Linhagem Celular , Células Cultivadas , Espinhas Dendríticas/química , Ativação Enzimática/fisiologia , Feminino , Hipocampo/química , Hipocampo/citologia , Neurônios/química , Gravidez , Ratos , Ratos Sprague-Dawley , Proteína Wnt-5a/análise , Proteínas rho de Ligação ao GTP/análise
12.
J Neurochem ; 158(3): 586-588, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33909918

RESUMO

In Alzheimer's disease (AD), hippocampal hyperactivation is already present at early stages of the disorder, in some cases, even when the individual is still asymptomatic. Neuronal hyperexcitability has been described to occur before the deposition of amyloid beta plaques in mouse models of AD and has been attributed to an imbalance between excitatory and inhibitory activity. In this Editorial Highlight, we discuss the article by Sosulina et al., published in this issue of the Journal of Neurochemistry, which offers novel insights into the possible origins of this neuronal excitability observed during the early pathogenesis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Hipocampo/patologia , Humanos , Neurônios/patologia , Ratos , Ratos Transgênicos
14.
Alzheimers Dement ; 17(2): 295-313, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33634602

RESUMO

Across Latin American and Caribbean countries (LACs), the fight against dementia faces pressing challenges, such as heterogeneity, diversity, political instability, and socioeconomic disparities. These can be addressed more effectively in a collaborative setting that fosters open exchange of knowledge. In this work, the Latin American and Caribbean Consortium on Dementia (LAC-CD) proposes an agenda for integration to deliver a Knowledge to Action Framework (KtAF). First, we summarize evidence-based strategies (epidemiology, genetics, biomarkers, clinical trials, nonpharmacological interventions, networking, and translational research) and align them to current global strategies to translate regional knowledge into transformative actions. Then we characterize key sources of complexity (genetic isolates, admixture in populations, environmental factors, and barriers to effective interventions), map them to the above challenges, and provide the basic mosaics of knowledge toward a KtAF. Finally, we describe strategies supporting the knowledge creation stage that underpins the translational impact of KtAF.


Assuntos
Demência/terapia , Prática Clínica Baseada em Evidências , Biomarcadores , Demência/epidemiologia , Humanos , América Latina/epidemiologia , Fatores Socioeconômicos
15.
J Neurosci ; 41(8): 1636-1649, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33478991

RESUMO

The acquisition of neuronal polarity is a complex molecular process that depends on changes in cytoskeletal dynamics and directed membrane traffic, regulated by the Rho and Rab families of small GTPases, respectively. However, during axon specification, a molecular link that couples these protein families has yet to be identified. In this paper, we describe a new positive feedback loop between Rab8a and Cdc42, coupled by Tuba, a Cdc42-specific guanine nucleotide-exchange factor (GEF), that ensures a single axon generation in rodent hippocampal neurons from embryos of either sex. Accordingly, Rab8a or Tuba gain-of-function generates neurons with supernumerary axons whereas Rab8a or Tuba loss-of-function abrogated axon specification, phenocopying the well-established effect of Cdc42 on neuronal polarity. Although Rab8 and Tuba do not interact physically, the activity of Rab8 is essential to generate a proximal to distal axonal gradient of Tuba in cultured neurons. Tuba-associated and Rab8a-associated polarity defects are also evidenced in vivo, since dominant negative (DN) Rab8a or Tuba knock-down impairs cortical neuronal migration in mice. Our results suggest that Tuba coordinates directed vesicular traffic and cytoskeleton dynamics during neuronal polarization.SIGNIFICANCE STATEMENT The morphologic, biochemical, and functional differences observed between axon and dendrites, require dramatic structural changes. The extension of an axon that is 1 µm in diameter and grows at rates of up to 500 µm/d, demands the confluence of two cellular processes: directed membrane traffic and fine-tuned cytoskeletal dynamics. In this study, we show that both processes are integrated in a positive feedback loop, mediated by the guanine nucleotide-exchange factor (GEF) Tuba. Tuba connects the activities of the Rab GTPase Rab8a and the Rho GTPase Cdc42, ensuring the generation of a single axon in cultured hippocampal neurons and controlling the migration of cortical neurons in the developing brain. Finally, we provide compelling evidence that Tuba is the GEF that mediates Cdc42 activation during the development of neuronal polarity.


Assuntos
Polaridade Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Neurogênese/fisiologia , Neurônios/citologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células COS , Movimento Celular/fisiologia , Chlorocebus aethiops , Retroalimentação Fisiológica/fisiologia , Feminino , Hipocampo/embriologia , Masculino , Camundongos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
16.
Alzheimers Dement (N Y) ; 6(1): e12092, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33283036

RESUMO

The SARS-CoV-2 global pandemic will disproportionately impact countries with weak economies and vulnerable populations including people with dementia. Latin American and Caribbean countries (LACs) are burdened with unstable economic development, fragile health systems, massive economic disparities, and a high prevalence of dementia. Here, we underscore the selective impact of SARS-CoV-2 on dementia among LACs, the specific strain on health systems devoted to dementia, and the subsequent effect of increasing inequalities among those with dementia in the region. Implementation of best practices for mitigation and containment faces particularly steep challenges in LACs. Based upon our consideration of these issues, we urgently call for a coordinated action plan, including the development of inexpensive mass testing and multilevel regional coordination for dementia care and related actions. Brain health diplomacy should lead to a shared and escalated response across the region, coordinating leadership, and triangulation between governments and international multilateral networks.

17.
BMC Geriatr ; 20(1): 505, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33238908

RESUMO

BACKGROUND: With the global population aging and life expectancy increasing, dementia has turned a priority in the health care system. In Chile, dementia is one of the most important causes of disability in the elderly and the most rapidly growing cause of death in the last 20 years. Cognitive complaint is considered a predictor for cognitive and functional decline, incident mild cognitive impairment, and incident dementia. The GERO cohort is the Chilean core clinical project of the Geroscience Center for Brain Health and Metabolism (GERO). The objective of the GERO cohort is to analyze the rate of functional decline and progression to clinical dementia and their associated risk factors in a community-dwelling elderly with subjective cognitive complaint, through a population-based study. We also aim to undertake clinical research on brain ageing and dementia disorders, to create data and biobanks with the appropriate infrastructure to conduct other studies and facilitate to the national and international scientific community access to the data and samples for research. METHODS: The GERO cohort aims the recruitment of 300 elderly subjects (> 70 years) from Santiago (Chile), following them up for at least 3 years. Eligible people are adults not diagnosed with dementia with subjective cognitive complaint, which are reported either by the participant, a proxy or both. Participants are identified through a household census. The protocol for evaluation is based on a multidimensional approach including socio-demographic, biomedical, psychosocial, neuropsychological, neuropsychiatric and motor assessments. Neuroimaging, blood and stool samples are also obtained. This multidimensional evaluation is carried out in a baseline and 2 follow-ups assessments, at 18 and 36 months. In addition, in months 6, 12, 24, and 30, a telephone interview is performed in order to keep contact with the participants and to assess general well-being. DISCUSSION: Our work will allow us to determine multidimensional risks factors associated with functional decline and conversion to dementia in elderly with subjective cognitive complain. The aim of our GERO group is to establish the capacity to foster cutting edge and multidisciplinary research on aging in Chile including basic and clinical research. TRIAL REGISTRATION: NCT04265482 in ClinicalTrials.gov. Registration Date: February 11, 2020. Retrospectively Registered.


Assuntos
Alcoolismo , Disfunção Cognitiva , Atividades Cotidianas , Idoso , Chile/epidemiologia , Cognição , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Estudos de Coortes , Estudo de Associação Genômica Ampla , Humanos , Masculino , Glicoproteínas de Membrana , Testes Neuropsicológicos , Projetos Piloto , Qualidade de Vida , Receptores Imunológicos
18.
Front Cell Dev Biol ; 8: 550267, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015054

RESUMO

Neural development is a complex process that involves critical events, including cytoskeleton dynamics and selective trafficking of proteins to defined cellular destinations. In this regard, Smad Anchor for Receptor Activation (SARA) is an early endosome resident protein, where perform trafficking- associated functions. In addition, SARA is also involved in cell signaling, including the TGFß-dependent pathway. Accordingly, SARA, and TGFß signaling are required for proper axonal specification and migration of cortical neurons, unveiling a critical role for neuronal development. However, the cooperative action between the TGFß pathway and SARA to this process has remained understudied. In this work, we show novel evidence suggesting a cross-talk between SARA and TGFß pathway needed for proper polarization, axonal specification, growth and cortical migration of central neurons both in vitro and in vivo. Using microscopy tools and cultured hippocampal neurons, we show a local interaction between SARA and TßRI (TGFß I receptor) at endosomes. In addition, SARA loss of function, induced by the expression of the dominant-negative SARA-F728A, over-activates the TGFß pathway, most likely by preserving phosphorylated TßRI. Consequently, SARA-mediated activation of TGFß pathway impacts on neuronal development, promoting axonal growth and cortical migration of neurons during brain development. Moreover, our data suggests that SARA basally prevents the activation of TßRI through the recruitment of the inhibitory complex PP1c/GADD34 in polarizing neurons. Together, these results propose that SARA is a negative regulator of the TGFß pathway, being critical for a proper orchestration for neuronal development.

19.
Aging Dis ; 11(4): 725-729, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32765937

RESUMO

The data on COVID-19 is clear on at least one point: Older adults are most vulnerable to hospitalization, disability and death following infection with the novel coronavirus. Therefore, therapeutically addressing degenerative aging processes as the main risk factors appears promising for tackling the present crisis and is expected to be relevant when tackling future infections, epidemics and pandemics. Therefore, utilizing a geroscience approach, targeting aging processes to prevent multimorbidity, via initiating broad clinical trials of potential geroprotective therapies, is recommended.

20.
Acta Neuropathol ; 140(5): 737-764, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32642868

RESUMO

Impaired neuronal proteostasis is a salient feature of many neurodegenerative diseases, highlighting alterations in the function of the endoplasmic reticulum (ER). We previously reported that targeting the transcription factor XBP1, a key mediator of the ER stress response, delays disease progression and reduces protein aggregation in various models of neurodegeneration. To identify disease modifier genes that may explain the neuroprotective effects of XBP1 deficiency, we performed gene expression profiling of brain cortex and striatum of these animals and uncovered insulin-like growth factor 2 (Igf2) as the major upregulated gene. Here, we studied the impact of IGF2 signaling on protein aggregation in models of Huntington's disease (HD) as proof of concept. Cell culture studies revealed that IGF2 treatment decreases the load of intracellular aggregates of mutant huntingtin and a polyglutamine peptide. These results were validated using induced pluripotent stem cells (iPSC)-derived medium spiny neurons from HD patients and spinocerebellar ataxia cases. The reduction in the levels of mutant huntingtin was associated with a decrease in the half-life of the intracellular protein. The decrease in the levels of abnormal protein aggregation triggered by IGF2 was independent of the activity of autophagy and the proteasome pathways, the two main routes for mutant huntingtin clearance. Conversely, IGF2 signaling enhanced the secretion of soluble mutant huntingtin species through exosomes and microvesicles involving changes in actin dynamics. Administration of IGF2 into the brain of HD mice using gene therapy led to a significant decrease in the levels of mutant huntingtin in three different animal models. Moreover, analysis of human postmortem brain tissue and blood samples from HD patients showed a reduction in IGF2 level. This study identifies IGF2 as a relevant factor deregulated in HD, operating as a disease modifier that buffers the accumulation of abnormal protein species.


Assuntos
Doença de Huntington/metabolismo , Doença de Huntington/patologia , Fator de Crescimento Insulin-Like II/metabolismo , Agregação Patológica de Proteínas/metabolismo , Animais , Humanos , Fator de Crescimento Insulin-Like II/farmacologia , Camundongos , Camundongos Transgênicos , Agregados Proteicos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA