Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(1): 1659-1674, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38108601

RESUMO

Mg and its alloys are promising biodegradable materials for orthopedic implants and cardiovascular stents. The first interactions of protein molecules with Mg alloy surfaces have a substantial impact on their biocompatibility and biodegradation. We investigate the early-stage electrochemical, chemical, morphological, and electrical surface potential changes of alloy WE43 in either 154 mM NaCl or Hanks' simulated physiological solutions in the absence or presence of bovine serum albumin (BSA) protein. WE43 had the lowest electrochemical current noise (ECN) fluctuations, the highest noise resistance (Zn = 1774 Ω·cm2), and the highest total impedance (|Z| = 332 Ω·cm2) when immersed for 30 min in Hanks' solution. The highest ECN, lowest Zn (1430 Ω·cm2), and |Z| (49 Ω·cm2) were observed in the NaCl solution. In the solutions containing BSA, a unique dual-mode biodegradation was observed. Adding BSA to a NaCl solution increased |Z| from 49 to 97 Ω·cm2 and decreased the ECN signal of the alloy, i.e., the BSA inhibited corrosion. On the other hand, the presence of BSA in Hanks' solution increased the rate of biodegradation by decreasing both Zn and |Z| while increasing ECN. Finally, using scanning Kelvin probe force microscopy (SKPFM), we observed an adsorbed nanolayer of BSA with aggregated and fibrillar morphology only in Hanks' solution, where the electrical surface potential was 52 mV lower than that of the Mg oxide layer.


Assuntos
Ligas , Magnésio , Teste de Materiais , Magnésio/química , Ligas/química , Cloreto de Sódio , Soroalbumina Bovina , Stents , Corrosão
2.
Langmuir ; 38(35): 10854-10866, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35994730

RESUMO

The formation of a protein nanobiofilm on the surface of degradable biomaterials such as magnesium (Mg) and its alloys influences metal ion release, cell adhesion/spreading, and biocompatibility. During the early stage of human body implantation, competition and interaction between inorganic species and protein molecules result in a complex film containing Mg oxide and a protein layer. This film affects the electrochemical properties of the metal surface, the protein conformational arrangement, and the electronic properties of the protein/Mg oxide interface. In this study, we discuss the impact of various simulated body fluids, including sodium chloride (NaCl), phosphate-buffered saline (PBS), and Hanks' solutions on protein adsorption, electrochemical interactions, and electrical surface potential (ESP) distribution at the adsorbed protein/Mg oxide interface. After 10 min of immersion in NaCl, atomic force microscopy (AFM) and scanning Kelvin probe force microscopy (SKPFM) showed a higher surface roughness related to enhanced degradation and lower ESP distribution on a Mg-based alloy than those in other solutions. Furthermore, adding bovine serum albumin (BSA) to all solutions caused a decline in the total surface roughness and ESP magnitude on the Mg alloy surface, particularly in the NaCl electrolyte. Using SKPFM surface analysis, we detected a protein nanobiofilm (∼10-20 nm) with an aggregated and/or fibrillary morphology only on the Mg surface exposed in Hanks' and PBS solutions; these surfaces had a lower ESP value than the oxide layer.


Assuntos
Ligas , Magnésio , Corrosão , Humanos , Magnésio/química , Óxido de Magnésio , Teste de Materiais , Óxidos , Cloreto de Sódio , Propriedades de Superfície
3.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012467

RESUMO

Nanoparticles (NPs) have high multifunctional potential to simultaneously enhance implant osseointegration and prevent infections caused by antibiotic-resistant bacteria. Here, we present the first report on using plasma electrolytic oxidation (PEO) to incorporate different combinations of reduced graphene oxide (rGO) and silver (Ag) NPs on additively manufactured geometrically ordered volume-porous titanium implants. The rGO nanosheets were mainly embedded parallel with the PEO surfaces. However, the formation of 'nano-knife' structures (particles embedded perpendicularly to the implant surfaces) was also found around the pores of the PEO layers. Enhanced in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus was observed for the rGO+Ag-containing surfaces compared to the PEO surfaces prepared only with AgNPs. This was caused by a significant improvement in the generation of reactive oxygen species, higher levels of Ag+ release, and the presence of rGO 'nano-knife' structures. In addition, the implants developed in this study stimulated the metabolic activity and osteogenic differentiation of MC3T3-E1 preosteoblast cells compared to the PEO surfaces without nanoparticles. Therefore, the PEO titanium surfaces incorporating controlled levels of rGO+Ag nanoparticles have high clinical potential as multifunctional surfaces for 3D-printed orthopaedic implants.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Grafite , Humanos , Nanopartículas Metálicas/química , Osteogênese , Porosidade , Impressão Tridimensional , Prata/química , Prata/farmacologia , Titânio/química , Titânio/farmacologia
4.
Materials (Basel) ; 15(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35208144

RESUMO

The use of metal additive manufacturing (AM) has strongly increased in the industry during the last years. More specifically, selective laser melting (SLM) is one of the most used techniques due to its numerous advantages compared to conventional processing methods. The purpose of this study is to investigate the effects of process parameters on the microstructural and corrosion properties of the additively manufactured AISI 316L stainless steel. Porosity, surface roughness, hardness, and grain size were studied for specimens produced with energy densities ranging from 51.17 to 173.91 J/mm3 that resulted from different combinations of processing parameters. Using experimental results and applying the Taguchi model, 99.38 J/mm3 was determined as the optimal energy density needed to produce samples with almost no porosity. The following analysis of variance ANOVA confirmed the scanning speed as the most influential factor in reducing the porosity percentage, which had a 74.9% contribution, followed by the position along the building direction with 22.8%, and finally, the laser energy with 2.3%. The influence on corrosion resistance was obtained by performing cyclic potentiodynamic polarization tests (CPP) in a 3.5 wt % NaCl solution at room temperature for different energy densities and positions (Z axis). The corrosion properties of the AM samples were studied and compared to those obtained from the traditionally manufactured samples. The corrosion resistance of the samples worsened with the increase in the percentage of porosity. The process parameters have consequently been optimized and the database has been extended to improve the quality of the AM-produced parts in which microstructural heterogeneities were observed along the building direction.

5.
Chemistry ; 18(1): 230-6, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22127953

RESUMO

This work presents a scanning electrochemical microscopy (SECM)-based in situ corrosion probing methodology that is capable of monitoring the release of zinc species in corrosion processes. It is based on the use of Hg-coated Pt microelectrodes as SECM tips, which offer a wider negative potential range than bare platinum or other noble-metal tips. This allows for the reduction of zinc ions at the tip to be investigated with low interference from hydrogen evolution and oxygen reduction from aqueous solutions. The processes involved in the corrosion of zinc during its immersion in chloride-containing solutions were successfully monitored by scanning the SECM tip, set at an adequate potential, across the sample either in one direction or in the X-Y plane parallel to its surface. In this way, it was possible to detect the anodic and cathodic sites at which the dissolution of zinc and the reduction of oxygen occurred, respectively. Additionally, cyclic voltammetry (CV) or constant potential measurements were used to monitor the release of zinc species collected at the tip during an SECM scan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA