Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Antimicrob Agents Chemother ; : e0071624, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39345140

RESUMO

The spectinamides are novel, narrow-spectrum semisynthetic analogs of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis. Spectinamides, including lead MBX-4888A (Lee-1810), exhibit promising therapeutic profiles in mice, as single drugs and as partner agents with other anti-tuberculosis antibiotics including rifampin and/or pyrazinamide. Here, we show that MBX-4888A, given by injection with the front-line standard of care regimen, is treatment shortening in multiple murine tuberculosis infection models. The positive treatment responses to MBX-4888A combination therapy in multiple mouse models, including mice exhibiting advanced pulmonary disease, can be attributed to favorable distribution in tissues and lesions, retention in caseum, along with favorable effects with rifampin and pyrazinamide under conditions achieved in necrotic lesions. This study also provides an additional data point regarding the safety and tolerability of spectinamide MBX-4888A in long-term murine efficacy studies.

2.
bioRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38798577

RESUMO

The spectinamides are novel, narrow-spectrum semisynthetic analogs of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis . Spectinamides, including lead MBX-4888A (Lee-1810), exhibit promising therapeutic profiles in mice, as single drugs and as partner agents with other anti-tuberculosis antibiotics including rifampin and/or pyrazinamide. To demonstrate that this translates to more effective cure, we first confirmed the role of rifampin, with or without pyrazinamide, as essential to achieve effective bactericidal responses and sterilizing cure in the current standard of care regimen in chronically infected C3HeB/FeJ mice compared to BALB/c mice. Thus, demonstrating added value in testing clinically relevant regimens in murine models of increasing pathologic complexity. Next we show that MBX-4888A, given by injection with the front-line standard of care regimen, is treatment shortening in multiple murine tuberculosis infection models. The positive treatment responses to MBX-4888A combination therapy in multiple mouse models including mice exhibiting advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in caseum, along with favorable effects with rifampin and pyrazinamide under conditions achieved in necrotic lesions. This study also provides an additional data point regarding the safety and tolerability of spectinamide MBX-4888A in long-term murine efficacy studies.

3.
Tuberculosis (Edinb) ; 147: 102503, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729070

RESUMO

Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.


Assuntos
Modelos Animais de Doenças , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Animais , Mycobacterium abscessus/efeitos dos fármacos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Camundongos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia
4.
Proc Natl Acad Sci U S A ; 121(17): e2403206121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630725

RESUMO

Mycobacterium abscessus is increasingly recognized as the causative agent of chronic pulmonary infections in humans. One of the genes found to be under strong evolutionary pressure during adaptation of M. abscessus to the human lung is embC which encodes an arabinosyltransferase required for the biosynthesis of the cell envelope lipoglycan, lipoarabinomannan (LAM). To assess the impact of patient-derived embC mutations on the physiology and virulence of M. abscessus, mutations were introduced in the isogenic background of M. abscessus ATCC 19977 and the resulting strains probed for phenotypic changes in a variety of in vitro and host cell-based assays relevant to infection. We show that patient-derived mutational variations in EmbC result in an unexpectedly large number of changes in the physiology of M. abscessus, and its interactions with innate immune cells. Not only did the mutants produce previously unknown forms of LAM with a truncated arabinan domain and 3-linked oligomannoside chains, they also displayed significantly altered cording, sliding motility, and biofilm-forming capacities. The mutants further differed from wild-type M. abscessus in their ability to replicate and induce inflammatory responses in human monocyte-derived macrophages and epithelial cells. The fact that different embC mutations were associated with distinct physiologic and pathogenic outcomes indicates that structural alterations in LAM caused by nonsynonymous nucleotide polymorphisms in embC may be a rapid, one-step, way for M. abscessus to generate broad-spectrum diversity beneficial to survival within the heterogeneous and constantly evolving environment of the infected human airway.


Assuntos
Mycobacterium abscessus , Humanos , Proteínas de Bactérias/genética , Lipopolissacarídeos/química , Mutação
5.
ACS Infect Dis ; 10(4): 1379-1390, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38511206

RESUMO

Two lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM), play various, albeit incompletely defined, roles in the interactions of mycobacteria with the host. Growing evidence points to the modification of LM and LAM with discrete covalent substituents as a strategy used by these bacteria to modulate their biological activities. One such substituent, originally identified in Mycobacterium tuberculosis (Mtb), is a 5-methylthio-d-xylose (MTX) sugar, which accounts for the antioxidative properties of LAM. The widespread distribution of this motif across Mtb isolates from several epidemiologically important lineages have stimulated interest in MTX-modified LAM as a biomarker of tuberculosis infection. Yet, several lines of evidence indicate that MTX may not be restricted to Mtb and that this motif may substitute more acceptors than originally thought. Using a highly specific monoclonal antibody to the MTX capping motif of Mtb LAM, we here show that MTX motifs not only substitute the mannoside caps of LAM but also the mannan core of LM in Mtb. MTX substituents were also found on the LM and LAM of pathogenic, slow-growing nontuberculous mycobacteria. The presence of MTX substituents on the LM and LAM from Mtb enhances the pro-apoptotic properties of both lipoglycans on LPS-stimulated THP-1 macrophages. A comparison of the cytokines and chemokines produced by resting and LPS-activated THP-1 cells upon exposure to MTX-proficient versus MTX-deficient LM further indicates that MTX substituents confer anti-inflammatory properties upon LM. These findings add to our understanding of the glycan-based strategies employed by slow-growing pathogenic mycobacteria to alter the host immune response to infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Lipopolissacarídeos , Tuberculose/microbiologia
6.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014249

RESUMO

The Nix-TB clinical trial evaluated a new 6-month regimen containing three-oral-drugs; bedaquiline (B), pretomanid (Pa) and linezolid (L) (BPaL regimen) for treatment of tuberculosis (TB). This regimen achieved remarkable results as almost 90% of the multidrug resistant (MDR) or extensively drug resistant (XDR) TB participants were cured but many patients also developed severe adverse effects (AEs). The AEs were associated with the long-term administration of the protein synthesis inhibitor linezolid. Spectinamide 1599 (S) is also a protein synthesis inhibitor of Mycobacterium tuberculosis with an excellent safety profile but which lacks oral bioavailability. Here we hypothesize that inhaled spectinamide 1599, combined with BPa --BPaS regimen--has similar efficacy to that of BPaL regimen while simultaneously avoiding the L-associated AEs. The BPaL and BPaS regimens were compared in the Balb/c and C3HeB/FeJ murine chronic TB efficacy models. After 4-weeks of treatment, both regimens promoted equivalent bactericidal effect in both TB murine models. However, treatment with BPaL resulted in significant weight loss and the complete blood count suggested development of anemia. These effects were not similarly observed in mice treated with BPaS. BPaL treatment also decreased myeloid to erythroid ratio and increased concentration of proinflammatory cytokines in bone marrow compared to mice receiving BPaS regimen. During therapy both regimens improved the lung lesion burden, reduced neutrophil and cytotoxic T cells counts while increased the number of B and helper and regulatory T cells. These combined data suggest that inhaled spectinamide 1599 combined with BPa is an effective TB regimen that avoids L-associated AEs. IMPORTANCE: Tuberculosis (TB) is an airborne infectious disease that spreads via aerosols containing Mycobacterium tuberculosis (Mtb), the causative agent of TB. TB can be cured by administration of 3-4 drugs for 6-9 months but there are limited treatment options for patients infected with multidrug (MDR) and extensively resistant (XDR) strains of Mtb. BPaL is a new all-oral combination of drugs consisting of Bedaquiline (B), Pretomanid (Pa) and Linezolid (L). This regimen was able to cure ∼90% of MDR and XDR TB patients in clinical trials but many patients developed severe adverse effects (AEs) associated to the long-term administration of linezolid. We evaluated a new regimen in which Linezolid in the BPaL regimen was replaced with inhaled spectinamide 1599. In the current study, we demonstrate that 4-weeks of treatment with inhaled spectinamide 1599 in combination with Bedaquiline and Pretomanid has equivalent efficacy to the BPaL drug combination and avoids the L-associated-AEs.

7.
PLoS Pathog ; 19(9): e1011636, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37669276

RESUMO

The covalent modification of bacterial (lipo)polysaccharides with discrete substituents may impact their biosynthesis, export and/or biological activity. Whether mycobacteria use a similar strategy to control the biogenesis of its cell envelope polysaccharides and modulate their interaction with the host during infection is unknown despite the report of a number of tailoring substituents modifying the structure of these glycans. Here, we show that discrete succinyl substituents strategically positioned on Mycobacterium tuberculosis (Mtb) lipoarabinomannan govern the mannose-capping of this lipoglycan and, thus, much of the biological activity of the entire molecule. We further show that the absence of succinyl substituents on the two main cell envelope glycans of Mtb, arabinogalactan and lipoarabinomannan, leads to a significant increase of pro-inflammatory cytokines and chemokines in infected murine and human macrophages. Collectively, our results validate polysaccharide succinylation as a critical mechanism by which Mtb controls inflammation.


Assuntos
Lipopolissacarídeos , Tuberculose , Humanos , Animais , Camundongos , Manose , Inflamação
8.
J Vis Exp ; (198)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37607097

RESUMO

Dry powder inhalers offer numerous advantages for delivering drugs to the lungs, including stable solid-state drug formulations, device portability, bolus metering and dosing, and a propellant-free dispersal mechanism. To develop pharmaceutical dry powder aerosol products, robust in vivo testing is essential. Typically, initial studies involve using a murine model for preliminary evaluation before conducting formal studies in larger animal species. However, a significant limitation in this approach is the lack of suitable device technology to accurately and reproducibly deliver dry powders to small animals, hindering such models' utility. To address these challenges, disposable syringe dosators were developed specifically for intrapulmonary delivery of dry powders in doses appropriate for mice. These dosators load and deliver a predetermined amount of powder obtained from a uniform bulk density powder bed. This discrete control is achieved by inserting a blunt needle to a fixed depth (tamping) into the powder bed, removing a fixed quantity each time. Notably, this dosing pattern has proven effective for a range of spray-dried powders. In experiments involving four different model spray-dried powders, the dosators demonstrated the ability to achieve doses within the range of 30 to 1100 µg. The achieved dose was influenced by factors such as the number of tamps, the size of the dosator needle, and the specific formulation used. One of the key benefits of these dosators is their ease of manufacturing, making them accessible and cost-effective for delivering dry powders to mice during initial proof-of-concept studies. The disposable nature of the dosators facilitates use in animal procedure rooms, where cleaning and refilling reusable systems and weighing materials is inconvenient. Thus, developing disposable syringe dosators has addressed a significant hurdle in murine dry powder delivery for proof-of-concept studies, enabling researchers to conduct more accurate and reproducible preliminary studies in small animal models for pulmonary drug delivery.


Assuntos
Líquidos Corporais , Agulhas , Animais , Camundongos , Pós , Seringas , Sistemas de Liberação de Medicamentos
9.
Pharmaceutics ; 15(6)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37376207

RESUMO

Spectinamides 1599 and 1810 are lead spectinamide compounds currently under preclinical development to treat multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. These compounds have previously been tested at various combinations of dose level, dosing frequency, and route of administration in mouse models of Mycobacterium tuberculosis (Mtb) infection and in healthy animals. Physiologically based pharmacokinetic (PBPK) modeling allows the prediction of the pharmacokinetics of candidate drugs in organs/tissues of interest and extrapolation of their disposition across different species. Here, we have built, qualified, and refined a minimalistic PBPK model that can describe and predict the pharmacokinetics of spectinamides in various tissues, especially those relevant to Mtb infection. The model was expanded and qualified for multiple dose levels, dosing regimens, routes of administration, and various species. The model predictions in mice (healthy and infected) and rats were in reasonable agreement with experimental data, and all predicted AUCs in plasma and tissues met the two-fold acceptance criteria relative to observations. To further explore the distribution of spectinamide 1599 within granuloma substructures as encountered in tuberculosis, we utilized the Simcyp granuloma model combined with model predictions in our PBPK model. Simulation results suggest substantial exposure in all lesion substructures, with particularly high exposure in the rim area and macrophages. The developed model may be leveraged as an effective tool in identifying optimal dose levels and dosing regimens of spectinamides for further preclinical and clinical development.

10.
Antimicrob Agents Chemother ; 67(6): e0016223, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154689

RESUMO

Intrinsic and acquired antibiotic resistance in Mycobacterium abscessus presents challenges in infection control, and new therapeutic strategies are needed. Bacteriophage therapy shows promise, but variabilities in M. abscessus phage susceptibility limits its broader utility. We show here that a mycobacteriophage-encoded lysin B (LysB) efficiently and rapidly kills both smooth- and rough-colony morphotype M. abscessus strains and reduces the pulmonary bacterial load in mice. LysB aerosolization presents a plausible treatment for pulmonary M. abscessus infections.


Assuntos
Micobacteriófagos , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Animais , Camundongos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Pulmão , Antibacterianos/farmacologia
11.
Tuberculosis (Edinb) ; 140: 102342, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37120915

RESUMO

Spectinamides are a novel series of spectinomycin analogs being developed for the treatment of tuberculosis. The preclinical lead spectinamide 1599 is an antituberculosis drug that possesses robust in vivo efficacy, good pharmacokinetic properties, and excellent safety profiles in rodents. In individuals infected with Mycobacterium tuberculosis or Mycobacterium bovis, causative agents of tuberculosis, the host immune system is capable of restraining these mycobacteria within granulomatous lesions. The harsh microenvironmental conditions of these granuloma lead to phenotypic transformation of mycobacteria. Phenotypically transformed bacteria display suboptimal growth, or complete growth arrest and are frequently associated with drug tolerance. Here we quantified the effect of spectinamide 1599 on log-phase and phenotypically tolerant isoforms of Mycobacterium bovis BCG using various in vitro approaches as a first indicator of spectinamide 1599 activity against various mycobacterial isoforms. We also used the hollow fiber infection model to establish time-kill curves and deployed pharmacokinetic/pharmacodynamic modeling to characterize the activity differences of spectinamide 1599 towards the different phenotypic subpopulations. Our results indicate that spectinamide 1599 is more efficacious against log phase bacteria when compared to its activity against other phenotypically tolerant forms such as acid phase bacteria and hypoxic phase bacteria, a behavior similar to the established antituberculosis drug isoniazid.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Humanos , Espectinomicina , Mycobacterium tuberculosis/genética , Antituberculosos/uso terapêutico
12.
Tuberculosis (Edinb) ; 139: 102306, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36716525

RESUMO

Nontuberculous mycobacterial (NTM) pulmonary infections are a global health concern and a significant contributor to lung disease. Systemic therapies of a cocktail of antibiotics administered over a long period often lead to adverse reactions and/or treatment failure. NTM pathogens, such as Mycobacterium abscessus (Mabs), are notoriously difficult to treat due to resistance to many traditional antibiotics. However, the antibiotic tigecycline has demonstrated efficacy in vitro and in vivo against Mabs strains varying in drug susceptibility. Tigecycline exhibits instability in aqueous medium, posing delivery challenges, and has caused severe adverse gastrointestinal effects following intravenous administration, requiring treatment discontinuation. To mitigate both of these concerns, inhalation therapies using dry powder aerosols are proposed as an alternative administration route and means of delivery. Tigecycline dry powder formulations were prepared, characterized, and optimized to develop a therapeutic aerosol with low moisture, high dispersibility, and a large fraction of particles in the respirable size range (1-5 µm). The addition of lactose, leucine, and phosphate buffer salts was investigated to achieve additional stability, dispersibility, and tolerability. Preliminary delivery of the dry powders to Mabs-infected mice for 30 min per day over 7 d demonstrated a 0.91-log (87.7%) decrease in lung bacterial burden.


Assuntos
Mycobacterium tuberculosis , Animais , Camundongos , Tigeciclina , Pós , Administração por Inalação , Aerossóis , Antibacterianos
13.
Tuberculosis (Edinb) ; 138: 102288, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470124

RESUMO

The benzothiazole amide CRS0393 demonstrated excellent in vitro activity against nontuberculous mycobacteria (NTM), including M. abscessus isolates from cystic fibrosis (CF) patients, with minimum inhibitory concentrations (MICs) of ≤0.03-0.5 µg/mL. The essential transport protein MmpL3 was confirmed as the target via analysis of spontaneous resistant mutants and further biological profiling. In mouse pharmacokinetic studies, intratracheal instillation of a single dose of CRS0393 resulted in high concentrations of drug in epithelial lining fluid (ELF) and lung tissue, which remained above the M. abscessus MIC for at least 9 hours post-dose. This exposure resulted in a penetration ratio of 261 for ELF and 54 for lung tissue relative to plasma. CRS0393 showed good oral bioavailability, particularly when formulated in kolliphor oil, with a lung-to-plasma penetration ratio ranging from 0.5 to 4. CRS0393 demonstrated concentration-dependent reduction of intracellular M. abscessus in a THP-1 macrophage infection model. CRS0393 was well tolerated following intranasal administration (8 mg/kg) or oral dosing (25 mg/kg) once daily for 28 days in dexamethasone-treated C3HeB/FeJ mice. Efficacy against M. abscessus strain 103 was achieved via the intranasal route, while oral dosing will need further optimization. CRS0393 holds promise for development as a novel agent with broad antimycobacterial activity.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium tuberculosis , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Micobactérias não Tuberculosas , Pulmão , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Testes de Sensibilidade Microbiana
14.
Cell Rep ; 41(11): 111783, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516760

RESUMO

Bacille Calmette-Guerin (BCG) is the only licensed vaccine against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB) disease. However, BCG has limited efficacy, necessitating the development of better vaccines. Non-tuberculous mycobacteria (NTMs) are opportunistic pathogens present ubiquitously in the environment. TB endemic countries experience higher exposure to NTMs, but previous studies have not elucidated the relationship between NTM exposure and BCG efficacy against TB. Therefore, we develop a mouse model (BCG + NTM) to simulate human BCG immunization regime and continuous NTM exposure. BCG + NTM mice exhibit superior and prolonged protection against pulmonary TB, with increased B cell influx and anti-Mtb antibodies in serum and airways, compared with BCG alone. Notably, spatial transcriptomics and immunohistochemistry reveal that BCG + NTM mice formed B cell aggregates with features of germinal center development, which correlate with reduced Mtb burden. Our studies suggest a direct relationship between NTM exposure and TB protection, with B cells playing a crucial role.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Camundongos , Humanos , Animais , Vacina BCG , Micobactérias não Tuberculosas , Imunidade Celular
15.
Antimicrob Agents Chemother ; 66(9): e0018622, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35943265

RESUMO

Tuberculosis (TB) remains a major cause of morbidity and mortality, particularly in low- and middle-income countries where access to health care workers, cold-chain storage, and sterile water sources may be limited. Inhaled drug delivery is a promising alternative to systemic delivery of antimycobacterial drugs, as it enables rapid achievement of high infection-site drug concentrations. The off-patent drug clofazimine (CFZ) may be particularly suitable for this route, given its known systemic toxicities. In this study, micronized CFZ particles produced by air jet milling were assessed for shelf-stability, pharmacokinetics, and anti-TB efficacy by the oral and pulmonary routes in BALB/c mice. Intratracheal instillation of micronized CFZ particles produced several-fold higher lung concentrations after a single 30 mg/kg dose compared to delivery via oral gavage, and faster onset of bactericidal activity was observed in lungs of mice with chronic Mycobacterium tuberculosis infection compared to the oral route. Both infection status and administration route affected the multidose pharmacokinetics (PK) of micronized CFZ. Increased lung and spleen accumulation of the drug after pulmonary administration was noted in infected mice compared to naive mice, while the opposite trend was noted in the oral dosing groups. The infection-dependent PK of inhaled micronized CFZ may point to a role of macrophage trafficking in drug distribution, given the intracellular-targeting nature of the formulation. Lastly, air jet milled CFZ exhibited robustness to storage-induced chemical degradation and changes in aerosol performance, thereby indicating the suitability of the formulation for treatment of TB in regions with limited cold chain supply.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Clofazimina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Tuberculose/tratamento farmacológico , Água
16.
Life (Basel) ; 12(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36013317

RESUMO

Since 1966, rifampicin (RIF) has been considered one of the most potent drugs in the treatment of tuberculosis (TB), which is caused by infection with M. tuberculosis (Mtb). New nanostructured formulations for RIF delivery and alternative routes of administration have been studied as potential forms of treatment. This study evaluates a liquid crystal system for RIF delivery, using alternative drug delivery routes. The systems developed are composed of surfactant, oleylamine, and soy phosphatidylcholine. With the aid of polarized light microscopy, it was possible to determine that the developed systems had a hexagonal mesophase. All systems developed showed non-Newtonian pseudoplasticity and a high degree of thixotropy. Liquid crystal systems with RIF showed an increase in elastic potential, indicating greater mu-coadhesiveness. The evaluation of mucoadhesive forces revealed an increase in the mucoadhesive potential in the presence of mucus, indicating the presence of satisfactory mucoadhesive forces. The 9DR and 10DR liquid crystal systems, when submitted to Differential Scanning Calorimetry analysis, remained structured even at temperatures above 100 °C, showing excellent stability. The developed liquid crystal systems showed a tolerable degree of cytotoxicity and bactericidal potential, for example, the 9DR system demonstrated a reduction in bacterial load after the third day and reached zero CFU on the seventh day of the test. The developed systems were also evaluated in the preclinical model of Mtb-infected mice, using the nasal, sublingual, and cutaneous route for the delivery of RIF associated with a nanostructured liquid crystal system as a possible tool in the treatment of TB.

17.
Sci Transl Med ; 14(633): eabj3860, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196022

RESUMO

A search for alternative Mycobacterium abscessus treatments led to our interest in the two-component regulator DosRS, which, in Mycobacterium tuberculosis, is required for the bacterium to establish a state of nonreplicating, drug-tolerant persistence in response to a variety of host stresses. We show here that the genetic disruption of dosRS impairs the adaptation of M. abscessus to hypoxia, resulting in decreased bacterial survival after oxygen depletion, reduced tolerance to a number of antibiotics in vitro and in vivo, and the inhibition of biofilm formation. We determined that three antimalarial drugs or drug candidates, artemisinin, OZ277, and OZ439, can target DosS-mediated hypoxic signaling in M. abscessus and recapitulate the phenotypic effects of genetically disrupting dosS. OZ439 displayed bactericidal activity comparable to standard-of-care antibiotics in chronically infected mice, in addition to potentiating the activity of antibiotics used in combination. The identification of antimalarial drugs as potent inhibitors and adjunct inhibitors of M. abscessus in vivo offers repurposing opportunities that could have an immediate impact in the clinic.


Assuntos
Antimaláricos , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/fisiologia
18.
Emerg Infect Dis ; 28(3): 747-749, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35202538

RESUMO

Nine-banded armadillos (Dasypus novemcinctus) are naturally infected with Mycobacterium leprae and are implicated in the zoonotic transmission of leprosy in the United States. In Mexico, the existence of such a reservoir remains to be characterized. We describe a wild armadillo infected by M. leprae in the state of Nuevo León, Mexico.


Assuntos
Tatus , Hanseníase , Animais , Tatus/microbiologia , Reservatórios de Doenças/microbiologia , Hanseníase/diagnóstico , Hanseníase/epidemiologia , Hanseníase/veterinária , México/epidemiologia , Mycobacterium leprae/genética
19.
Front Microbiol ; 12: 743126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777289

RESUMO

Characterizing Mycobacterium abscessus complex (MABSC) biofilms under host-relevant conditions is essential to the design of informed therapeutic strategies targeted to this persistent, drug-tolerant, population of extracellular bacilli. Using synthetic cystic fibrosis medium (SCFM) which we previously reported to closely mimic the conditions encountered by MABSC in actual cystic fibrosis (CF) sputum and a new model of biofilm formation, we show that MABSC biofilms formed under these conditions are substantially different from previously reported biofilms grown in standard laboratory media in terms of their composition, gene expression profile and stress response. Extracellular DNA (eDNA), mannose-and glucose-containing glycans and phospholipids, rather than proteins and mycolic acids, were revealed as key extracellular matrix (ECM) constituents holding clusters of bacilli together. None of the environmental cues previously reported to impact biofilm development had any significant effect on SCFM-grown biofilms, most likely reflecting the fact that SCFM is a nutrient-rich environment in which MABSC finds a variety of ways of coping with stresses. Finally, molecular determinants were identified that may represent attractive new targets for the development of adjunct therapeutics targeting MABSC biofilms in persons with CF.

20.
Precis Nanomed ; 4(1): 724-737, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-34676370

RESUMO

As exemplified by the COVID-19 pandemic, highly infective respiratory viruses can spread rapidly in the population because of lack of effective approaches to control viral replication and spread. Niclosamide (NCM) is an old anthelminthic drug (World Health Organization essential medicine list) with pleiotropic pharmacological activities. Several recent publications demonstrated that NCM has broad antiviral activities and potently inhibits viral replication, including replication of SARS-CoV-2, SARS-CoV, and dengue viruses. Unfortunately, NCM is almost completely insoluble in water, which limits its clinical use. We developed a cost-effective lipid nanoparticle formulation of NCM (nano NCM) using only FDA-approved excipient and demonstrated potency against SARS-CoV-2 infection in cells (Vero E6 and ACE2-expressing lung epithelium cells).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA