Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(31): 12053-12062, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324323

RESUMO

The organic components in metal-organic frameworks (MOFs) are unique: they are embedded in a crystalline lattice, yet, as they are separated from each other by tunable free space, a large variety of dynamic behavior can emerge. These rotational dynamics of the organic linkers are especially important due to their influence over properties such as gas adsorption and kinetics of guest release. To fully exploit linker rotation, such as in the form of molecular machines, it is necessary to engineer correlated linker dynamics to achieve their cooperative functional motion. Here, we show that for MIL-53, a topology with closely spaced rotors, the phenylene functionalization allows researchers to tune the rotors' steric environment, shifting linker rotation from completely static to rapid motions at frequencies above 100 MHz. For steric interactions that start to inhibit independent rotor motion, we identify for the first time the emergence of coupled rotation modes in linker dynamics. These findings pave the way for function-specific engineering of gear-like cooperative motion in MOFs.

2.
Chem Commun (Camb) ; 57(8): 1022-1025, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406176

RESUMO

The ease with which molecular building blocks can be ordered in metal-organic frameworks is an invaluable asset for many potential applications. In this work, we exploit this inherent order to produce chromatic polarizers based on visible-light linear dichroism via cobalt paddlewheel chromophores.

3.
Chemistry ; 26(16): 3564-3570, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31913529

RESUMO

A modulated synthesis approach based on the chelating properties of oxalic acid (H2 C2 O4 ) is presented as a robust and versatile method to achieve highly crystalline Al-based metal-organic frameworks. A comparative study on this method and the already established modulation by hydrofluoric acid was conducted using MIL-53 as test system. The superior performance of oxalic acid modulation in terms of crystallinity and absence of undesired impurities is explained by assessing the coordination modes of the two modulators and the structural features of the product. The validity of our approach was confirmed for a diverse set of Al-MOFs, namely X-MIL-53 (X=OH, CH3 O, Br, NO2 ), CAU-10, MIL-69, and Al(OH)ndc (ndc=1,4-naphtalenedicarboxylate), highlighting the potential benefits of extending the use of this modulator to other coordination materials.

4.
Nanomaterials (Basel) ; 9(3)2019 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-30832298

RESUMO

Among the numerous fascinating properties of metal⁻organic frameworks (MOFs), their rotational dynamics is perhaps one of the most intriguing, with clear consequences for adsorption and separation of molecules, as well as for optical and mechanical properties. A closer look at the rotational mobility in MOF linkers reveals that it is not only a considerably widespread phenomenon, but also a fairly diverse one. Still, the impact of these dynamics is often understated. In this review, we address the various mechanisms of linker rotation reported in the growing collection of literature, followed by a highlight of the methods currently used in their study, and we conclude with the impacts that such dynamics have on existing and future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA