Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
J Sci Food Agric ; 96(5): 1409-14, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26619956

RESUMO

The health and wellbeing of future generations will depend on humankind's ability to deliver sufficient nutritious food to a world population in excess of 9 billion. Feeding this many people by 2050 will require science-based solutions that address sustainable agricultural productivity and enable healthful dietary patterns in a more globally equitable way. This topic was the focus of a multi-disciplinary international conference hosted by Nestlé in June 2015, and provides the inspiration for the present article. The conference brought together a diverse range of expertise and organisations from the developing and industrialised world, all with a common interest in safeguarding the future of food. This article provides a snapshot of three of the recurring topics that were discussed during this conference: soil health, plant science and the future of farming practice. Crop plants and their cultivation are the fundamental building blocks for a food secure world. Whether these are grown for food or feed for livestock, they are the foundation of food and nutrient security. Many of the challenges for the future of food will be faced where the crops are grown: on the farm. Farmers need to plant the right crops and create the right conditions to maximise productivity (yield) and quality (e.g. nutritional content), whilst maintaining the environment, and earning a living. New advances in science and technology can provide the tools and know-how that will, together with a more entrepreneurial approach, help farmers to meet the inexorable demand for the sustainable production of nutritious foods for future generations.


Assuntos
Agricultura/tendências , Abastecimento de Alimentos , Agricultura/métodos , Botânica/tendências , Conservação dos Recursos Naturais , Produtos Agrícolas/crescimento & desenvolvimento , Abastecimento de Alimentos/métodos , Humanos , Micronutrientes/análise , Valor Nutritivo , Plantas/química , Solo/química
3.
Environ Toxicol Chem ; 25(12): 3275-88, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17220099

RESUMO

To assess the impact of pesticides on aquatic organisms under realistic worst-case conditions, a macroinvertebrate community of small ditches was sampled at 40 sites of the orchard region Altes Land near Hamburg, Germany. To differentiate between pesticide impact and other variables, the ditches selected for sampling were located at different distances along grassland, unused apple orchards, and orchards managed with integrated and/or organic crop protection methods. Samples of macroinvertebrates were taken on five dates over two years. In addition to biological data, water chemistry and structural parameters were measured. For each sampling site, a potential for exposure was calculated on the basis of the distance of the ditch to the nearest row of trees and the depth and width of the ditch. The neighborhood to either grassland or orchards turned out to have a larger impact on the macroinvertebrate community than the potential for exposure. Therefore, grassland sites were omitted from further evaluation. Remaining sites were grouped into low exposure (sites at unused orchards), medium exposure (distance of 3-5 m [track] between trees and ditch), and high exposure (trees close to the ditch, mean distance < or = 1.5 m). Principal response curves showed differences in community structure between the three exposure groups over time. Whereas for sites from the high exposure group significant differences from low exposure was observed in all seasons, significant differences between low and medium were observed only occasionally. Effects were less pronounced in samples taken at springtime before the starting pesticide applications, suggesting some community recovery. Species richness was negatively correlated to exposure potential. Isopoda, Eulamellibranchiata, and insects, especially Ephemeroptera, showed a high negative correlation with the potential for pesticide exposure, suggesting that these taxa are sensitive to the pesticide use in the orchards.


Assuntos
Dactylis , Ecossistema , Invertebrados/efeitos dos fármacos , Praguicidas/farmacologia , Poaceae , Solo/análise , Água/análise , Animais , Dactylis/efeitos dos fármacos , Alemanha , Poaceae/efeitos dos fármacos , Dinâmica Populacional , Fatores de Tempo
4.
Environ Toxicol Chem ; 24(5): 1182-9, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16110998

RESUMO

The natural variability on a spatial and temporal scale was examined in the zooplankton community of mesocosms from Syngenta Crop Protection AG (Stein, Switzerland), with the focus on improving the experimental design and evaluation of mesocosm studies. Analysis was performed using zooplankton data collected during a three-year period in 3 (1996 and 1998) to 12 (1997) ponds. Interreplicate variability was measured as the variance among the 3 to 12 replicates at each sampling date. Temporal variation was examined as seasonal variability by comparing different sampling dates within a year and as year-to-year variation by comparing pooled data year by year. Univariate and multivariate methods were used for the evaluation of population and community data, respectively. Results from the present study indicate that because of the low interreplicate variability, only data from high-abundance species could be evaluated with a precision able to detect effects less than 20%. For the majority of the zooplankton populations, abundances were lower than 10 organisms/L, with frequent zero counts resulting in a weak evaluation of the data with a precision able to detect effects of greater than 20 and 110%. Ordination analysis of the community data from the three years revealed that approximately 29% of the total variance could be explained by year-to-year differences, whereas 11% could be attributed to seasonal variability within a year. The residual variance can be attributed to interreplicate variability and sampling error. These results were in line with findings for individual populations. The present analysis demonstrated that the inherent variability of a system should be investigated for a proper design and evaluation of mesocosm studies and promotes the use of multivariate tools for a more comprehensive interpretation of mesocosm data.


Assuntos
Ecossistema , Água Doce/química , Poluentes Químicos da Água/toxicidade , Zooplâncton/efeitos dos fármacos , Animais , População , Análise de Componente Principal , Estações do Ano , Suíça , Zooplâncton/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA