Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003271

RESUMO

Pusa Basmati 1509 (PB1509) is one of the major foreign-exchange-earning varieties of Basmati rice; it is semi-dwarf and early maturing with exceptional cooking quality and strong aroma. However, it is highly susceptible to various biotic stresses including bacterial blight and blast. Therefore, bacterial blight resistance genes, namely, xa13 + Xa21 and Xa38, and fungal blast resistance genes Pi9 + Pib and Pita were incorporated into the genetic background of recurrent parent (RP) PB1509 using donor parents, namely, Pusa Basmati 1718 (PB1718), Pusa 1927 (P1927), Pusa 1929 (P1929) and Tetep, respectively. Foreground selection was carried out with respective gene-linked markers, stringent phenotypic selection for recurrent parent phenotype, early generation background selection with Simple sequence repeat (SSR) markers, and background analysis at advanced generations with Rice Pan Genome Array comprising 80K SNPs. This has led to the development of Near isogenic lines (NILs), namely, Pusa 3037, Pusa 3054, Pusa 3060 and Pusa 3066 carrying genes xa13 + Xa21, Xa38, Pi9 + Pib and Pita with genomic similarity of 98.25%, 98.92%, 97.38% and 97.69%, respectively, as compared to the RP. Based on GGE-biplot analysis, Pusa 3037-1-44-3-164-20-249-2 carrying xa13 + Xa21, Pusa 3054-2-47-7-166-24-261-3 carrying Xa38, Pusa 3060-3-55-17-157-4-124-1 carrying Pi9 + Pib, and Pusa 3066-4-56-20-159-8-174-1 carrying Pita were identified to be relatively stable and better-performing individuals in the tested environments. Intercrossing between the best BC3F1s has led to the generation of Pusa 3122 (xa13 + Xa21 + Xa38), Pusa 3124 (Xa38 + Pi9 + Pib) and Pusa 3123 (Pi9 + Pib + Pita) with agronomy, grain and cooking quality parameters at par with PB1509. Cultivation of such improved varieties will help farmers reduce the cost of cultivation with decreased pesticide use and improve productivity with ensured safety to consumers.


Assuntos
Oryza , Humanos , Melhoramento Genético , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Marcadores Genéticos
2.
Mol Genet Genomics ; 298(5): 995-1006, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37231151

RESUMO

Fruiting behaviour and sex form are important goals for Luffa breeders and this study aimed to shed light upon inheritance patterns for both these traits. The hermaphrodite form of Luffa acutangula (known as Satputia) is an underutilized vegetable with a unique clustered fruiting habit. Its desirable traits, such as plant architecture, earliness, as well as contrasting traits like unique clustered fruiting, bisexual flower, and crossability with Luffa acutangula (monoecious ridge gourd with solitary fruits), make it a potential source for trait improvement and mapping of desirable traits in Luffa. In the present study, we have elucidated the inheritance pattern of fruiting behaviour in Luffa using F2 mapping population generated from a cross between Pusa Nutan (Luffa acutangula, monoecious, solitary fruiting) × DSat-116 (Luffa acutangula, hermaphrodite, cluster fruiting). In F2 generation, the observed distribution of plant phenotypes fitted in the expected ratio of 3:1 (solitary vs cluster) for fruit-bearing habit. This is the first report of monogenic recessive control for cluster fruit-bearing habit in Luffa. Herein, we designate for the first time the gene symbol cl for cluster fruit bearing in Luffa. Linkage analysis revealed that SRAP marker ME10 EM4-280 was linked to the fruiting trait at the distance of 4.6 cM from the Cl locus. In addition, the inheritance pattern of hermaphrodite sex form in Luffa was also studied in the F2 population of Pusa Nutan × DSat-116 that segregated into 9:3:3:1 ratio (monoecious:andromonoecious:gynoecious:hermaphrodite), suggesting a digenic recessive control of hermaphrodite sex form in Luffa, which was further confirmed by the test cross. The inheritance and identification of molecular marker for cluster fruiting trait provides a basis for breeding in Luffa species.


Assuntos
Frutas , Luffa , Frutas/genética , Melhoramento Vegetal , Plantas , Padrões de Herança/genética , Hábitos
3.
Plant Dis ; 107(3): 896-898, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36265154

RESUMO

Ustilaginoidea virens is the fungal pathogen causing an emerging false smut disease that affects crop yield as well as deteriorates quality of the grains by producing mycotoxins. A high quality genome of U. virens isolate UV2_4G was sequenced using Nanopore and Illumina HiSeq 2,000 sequencing platforms. The total assembled genome of Indian isolate UV2_4G was 35.9 Mb, which comprised 89 scaffolds with N50 of 700,296 bp. A total of 358,697 variants were identified in the genome, out of which 355,173 were SNPs and 3,524 were INDELS. Further, 7,390 SSRs belonging to different repeat types were also identified in the genome. Out of 7,444 proteins predicted, 7,206 were functionally annotated. A total of 1,307 CAZymes, 501 signal peptides, 1,876 effectors, and 2,709 genes involved in host-pathogen interactions were identified. Comparative analysis revealed isolate UV2_4G is distinct with 31 unique clusters and placed distantly in phylogenetic analysis. Taken together, this high-quality genome assembly and sequence annotation resource can give an improved insight for characterizing the biological and pathogenic mechanisms of U. virens.


Assuntos
Hypocreales , Oryza , Ustilaginales , Oryza/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Hypocreales/genética , Ustilaginales/genética
4.
Front Nutr ; 9: 1040362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466416

RESUMO

Background: Antioxidants detain the development and proliferation of various non-communicable diseases (NCDs). γ-oryzanol, a group of steryl ferulates and caffeates, is a major antioxidant present in rice grain with proven health benefits. The present study evaluated the distribution and dynamics of γ-oryzanol and its components in spatial and temporal scales and also delineated the effect of processing and cooking on its retention. Methods: Six rice varieties (four Basmati and two non-Basmati) belonging to indica group were analyzed at spatial scale in four different tissues (leaf blades, leaf sheaths, peduncle and spikelets) and temporal scale at three developmental stages (booting, milky and dough). Additionally, the matured grains were fractioned into husk, embryo, bran, and endosperm to assess differential accumulation in these tissues. Further, milling and cooking of the samples was done to assess the retention upon processing. After extraction of γ-oryzanol by solvent extraction method, individual components were identified by UPLC-QToF-ESI-MS and quantified by RP-HPLC. Results: The non-seed tissues were significantly different from the seed tissues for composition and quantitative variation of γ-oryzanol. Cycloartenyl caffeate was predominant in all the non-seed tissues during the three developmental stages while it showed significant reduction during the growth progression toward maturity and was totally absent in the matured grains. In contrary, the 24-methylenecycloartanyl ferulate, campesteryl ferulate and ß-sitosteryl ferulate showed significant increment toward the growth progression to maturity. Milling caused significant reduction, retaining only an average of 58.77% γ-oryzanol. Cooking of brown rice in excess water showed relatively lower average retention (43.31%) to samples cooked in minimal water (54.42%). Cooked milled rice showed least mean retention of 21.66%. Conclusion: The results demonstrate prominent compositional variation of γ-oryzanol during different growth stages. For the first time, the study demonstrated that ferulate esters of γ-oryzanol were predominant in the seed tissues while caffeate esters were dominant in non-seed tissues. Basmati cultivars show differential expression of γ-oryzanol and its components compared to non-Basmati cultivars. Cooking in excess water causes maximum degradation of γ-oryzanol. Post-harvest losses due to milling and cooking indicate the necessity of biofortification for γ-oryzanol content in rice grain.

5.
Front Plant Sci ; 13: 994447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544876

RESUMO

Background: Basmati is a speciality segment in the rice genepool characterised by explicit grain quality. For the want of suitable populations, genome-wide association study (GWAS) in Basmati rice has not been attempted. Materials: To address this gap, we have performed a GWAS on a panel of 172 elite Basmati multiparent population comprising of potential restorers and maintainers. Phenotypic data was generated for various agronomic and grain quality traits across seven different environments during two consecutive crop seasons. Based on the observed phenotypic variation, three agronomic traits namely, days to fifty per cent flowering, plant height and panicle length, and three grain quality traits namely, kernel length before cooking, length breadth ratio and kernel length after cooking were subjected to GWAS. Genotyped with 80K SNP array, the population was subjected to principal component analysis to stratify the underlying substructure and subjected to the association analysis using Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) model. Results: We identified 32 unique MTAs including 11 robust MTAs for the agronomic traits and 25 unique MTAs including two robust MTAs for the grain quality traits. Six out of 13 robust MTAs were novel. By genome annotation, six candidate genes associated with the robust MTAs were identified. Further analysis of the allelic combinations of the robust MTAs enabled the identification of superior allelic combinations in the population. This information was utilized in selecting 77 elite Basmati rice genotypes from the panel. Conclusion: This is the first ever GWAS study in Basmati rice which could generate valuable information usable for further breeding through marker assisted selection, including enhancing of heterosis.

6.
Front Genet ; 13: 876522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734422

RESUMO

Temperature rise predicted for the future will severely affect rice productivity because the crop is highly sensitive to heat stress at the reproductive stage. Breeding tolerant varieties is an economically viable option to combat heat stress, for which the knowledge of target genomic regions associated with the reproductive stage heat stress tolerance (RSHT) is essential. A set of 192 rice genotypes of diverse origins were evaluated under natural field conditions through staggered sowings for RSHT using two surrogate traits, spikelet fertility and grain yield, which showed significant reduction under heat stress. These genotypes were genotyped using a 50 k SNP array, and the association analysis identified 10 quantitative trait nucleotides (QTNs) for grain yield, of which one QTN (qHTGY8.1) was consistent across the different models used. Only two out of 10 MTAs coincided with the previously reported QTLs, making the remaing eight novel. A total of 22 QTNs were observed for spikelet fertility, among which qHTSF5.1 was consistently found across three models. Of the QTNs identified, seven coincided with previous reports, while the remaining QTNs were new. The genes near the QTNs were found associated with the protein-protein interaction, protein ubiquitination, stress signal transduction, and so forth, qualifying them to be putative for RSHT. An in silico expression analysis revealed the predominant expression of genes identified for spikelet fertility in reproductive organs. Further validation of the biological relevance of QTNs in conferring heat stress tolerance will enable their utilization in improving the reproductive stage heat stress tolerance in rice.

7.
Physiol Mol Biol Plants ; 28(5): 1013-1027, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35722518

RESUMO

Allelic variability of the aroma gene, betaine aldehyde dehydrogenase 2 (BADH2) was studied in a random subset of indigenous aromatic rice germplasm along with a few exotic aromatic accessions. Use of functional markers of four badh2 alleles identified that the test panel possessed only two alleles, badh2-E7 and badh2-p-5'UTR. Two other alleles, badh2.2 and badh2-E4-5.2 were absent. Based on the alleles present, four functional polymorphisms (FP) were detected, namely FP1 to FP4. 188 genotypes possessed FP1 having both the badh2-p-5'UTR and badh2-E7 (71.8%) alleles. The badh2 allele with FP1 is named badh2-E7-p. 39 genotypes (14.9%) possessed only the badh2-p-5'UTR allele (FP3), while three genotypes were found to carry only the badh2-E7 allele (FP2). We also found that 32 genotypes (12.2%) did not have any of the target aroma alleles tested in this study (FP4). Interestingly, for badh2-p-5'UTR marker, the expected 198 bp amplicon for the non-aromatic allele could not be detected among any of the genotypes tested. Instead, an amplicon of 456 bp length appeared with 100% presence in the non-aromatic checks. Notwithstanding, the 456 bp allele also showed a 16% presence among the aromatic lines. This article forms the first report of this allele, named badh2-p1, among aromatic rice. Quantification of 2-Acetyl-1-Pyrroline (2AP) content and sensory evaluation among the test genotypes showed that those with FP1 are highly aromatic than the genotypes carrying other types of FPs. But, a few strongly aromatic lines showed lower 2AP content. The BADH2 characterization carried out in this study is suggestive of identifying the additional gene(s)/ allele(s) governing aroma among the Indian fragrant rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01181-9.

8.
Food Chem ; 369: 130887, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461519

RESUMO

Rapid deterioration of rice bran due to the LOX3 enzyme catalysed oxidation of PUFA is the major bottleneck for its utilization in various downstream applications. In the present study, we have identified a set of nine novel LOX3-null rice accessions carrying a deletion of C residue in the exon2 causing a frameshift mutation resulting in a truncated non-functional LOX3 protein. Our study, further manifested the predominance of C deletion based LOX3-null allele, named lox3-b, in the aromatic rice germplasm particularly in the Indian Basmati rice group. The LOX3-null genotypes exhibited significantly reduced rancidity, after six months of storage. They also showed significantly lower percentage reduction of linoleic acid (LA), higher γ-oryzanol content and lower hexanal content. A functional dCAPS marker designed based on the deletion polymorphism clearly differentiated LOX3 and lox3-b alleles, and has the potential application in marker assisted rice breeding programmes to develop cultivars with better bran storability.


Assuntos
Oryza , Alelos , Genótipo , Lipoxigenases , Oryza/genética , Melhoramento Vegetal , Proteínas de Plantas , Polimorfismo Genético
9.
Front Plant Sci ; 13: 1064556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589066

RESUMO

Parthenocarpy is an extremely important trait that revolutionized the worldwide cultivation of cucumber under protected conditions. Pusa Parthenocarpic Cucumber-6 (PPC-6) is one of the important commercially cultivated varieties under protected conditions in India. Understanding the genetics of parthenocarpy, molecular mapping and the development of molecular markers closely associated with the trait will facilitate the introgression of parthenocarpic traits into non-conventional germplasm and elite varieties. The F1, F2 and back-crosses progenies with a non-parthenocarpic genotype, Pusa Uday indicated a single incomplete dominant gene controlling parthenocarpy in PPC-6. QTL-seq comprising of the early parthenocarpy and non-parthenocarpic bulks along with the parental lines identified two major genomic regions, one each in chromosome 3 and chromosome 6 spanning over a region of 2.7 Mb and 7.8 Mb, respectively. Conventional mapping using F2:3 population also identified two QTLs, Parth6.1 and Parth6.2 in chromosome 6 which indicated the presence of a major effect QTL in chromosome 6 determining parthenocarpy in PPC-6. The flanking markers, SSR01148 and SSR 01012 for Parth6.1 locus and SSR10476 and SSR 19174 for Parth6.2 locus were identified and can be used for introgression of parthenocarpy through the marker-assisted back-crossing programme. Functional annotation of the QTL-region identified two major genes, Csa_6G396640 and Csa_6G405890 designated as probable indole-3-pyruvate monooxygenase YUCCA11 and Auxin response factor 16, respectively associated with auxin biosynthesis as potential candidate genes. Csa_6G396640 showed only one insertion at position 2179 in the non-parthenocarpic parent. In the case of Csa_6G405890, more variations were observed between the two parents in the form of SNPs and InDels. The study provides insight about genomic regions, closely associated markers and possible candidate genes associated with parthenocarpy in PPC-6 which will be instrumental for functional genomics study and better understanding of parthenocarpy in cucumber.

10.
Front Plant Sci ; 12: 752730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069617

RESUMO

Reproductive stage drought stress (RSDS) is a major challenge in rice production worldwide. Cultivar development with drought tolerance has been slow due to the lack of precise high throughput phenotyping tools to quantify drought stress-induced effects. Most of the available techniques are based on destructive sampling and do not assess the progress of the plant's response to drought. In this study, we have used state-of-the-art image-based phenotyping in a phenomics platform that offers a controlled environment, non-invasive phenotyping, high accuracy, speed, and continuity. In rice, several quantitative trait loci (QTLs) which govern grain yield under drought determine RSDS tolerance. Among these, qDTY2.1 and qDTY3.1 were used for marker-assisted breeding. A set of 35 near-isogenic lines (NILs), introgressed with these QTLs in the popular variety, Pusa 44 were used to assess the efficiency of image-based phenotyping for RSDS tolerance. NILs offered the most reliable contrast since they differed from Pusa 44 only for the QTLs. Four traits, namely, the projected shoot area (PSA), water use (WU), transpiration rate (TR), and red-green-blue (RGB) and near-infrared (NIR) values were used. Differential temporal responses could be seen under drought, but not under unstressed conditions. NILs showed significant level of RSDS tolerance as compared to Pusa 44. Among the traits, PSA showed strong association with yield (80%) as well as with two drought tolerances indices, stress susceptibility index (SSI) and tolerance index (TOL), establishing its ability in identifying the best drought tolerant NILs. The results revealed that the introgression of QTLs helped minimize the mean WU per unit of biomass per day, suggesting the potential role of these QTLs in improving WU-efficiency (WUE). We identified 11 NILs based on phenomics traits as well as performance under imposed drought in the field. The study emphasizes the use of phenomics traits as selection criteria for RSDS tolerance at an early stage, and is the first report of using phenomics parameters in RSDS selection in rice.

11.
Front Genet ; 11: 570731, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193672

RESUMO

Aromatic rice of Manipur popularly known as Chakhao is a speciality glutinous rice, for which protection under geographical indication in India has been granted recently. The agronomic and nutraceutical variability of the Chakhao rice germplasm is yet to be genetically characterized. To address this gap, characterization of ninety-three landraces for agro-morphological traits, grain pigmentation, antioxidant properties, and molecular genetic variation was carried out to unravel their population genetic structure. Two major groups were identified based on pericarp color, namely, purple and non-purple, which showed a significant variation for plant height, panicle length, and grain yield. Molecular marker analysis revealed three subpopulations that could be associated with pericarp pigmentation. Deep purple genotypes formed POP3, japonica genotypes adapted to hill environment formed POP1, while POP2 comprised of both indica and aus types. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed two major anthocyanin compounds in pigmented rices, namely, cyanidin-3-O-glucoside (C3G) and peonidin-3-O-glucoside (P3G). The total anthocyanin content among pigmented genotypes ranged from 29.8 to 275.8 mg.100g-1 DW. Total phenolics ranged from 66.5 to 700.3 mg GAE.100g-1 DW with radical scavenging activity (RSA) varying between 17.7 and 65.7%. Anthocyanins and phenolics showed a direct relationship with RSA implying the nutraceutical benefits of deep pigmented rice such as Manipur black rice. Aromatic rices from Manipur were found to be genetically diverse. Therefore, efforts need to be made for maintaining the geographic identity of these rice and utilization in breeding for region-specific cultivar improvement.

12.
Rice (N Y) ; 13(1): 68, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32930909

RESUMO

BACKGROUND: Direct-seeded rice (DSR) is a potential technology for sustainable rice farming as it saves water and labor. However, higher incidence of weed under DSR limits productivity. Therefore, there is a need to develop herbicide tolerant (HT) rice varieties. RESULTS: We used marker assisted backcross breeding (MABB) to transfer a mutant allele of Acetohydroxy acid synthase (AHAS) gene, which confers tolerance to imidazolinone group of herbicides from the donor parent (DP) "Robin" into the genetic background of an elite popular Basmati rice variety, Pusa Basmati 1121 (PB 1121). Foreground selection was done using the AHAS gene linked Simple Sequence Repeat (SSR) marker RM6844 and background selection was performed using 112 genome-wide SSR markers polymorphic between PB 1121 and Robin. Phenotypic selection for agronomic, Basmati grain and cooking quality traits in each generation was carried out to improve the recovery of recurrent parent phenome (RPP). Finally, a set of 12 BC4F4 near isogenic lines (NILs), with recurrent parent genome (RPG) recovery ranging from 98.66 to 99.55% were developed and evaluated. PB 1121-HT NILs namely 1979-14-7-33-99-10, 1979-14-7-33-99-15 and 1979-14-7-33-99-66 were found superior to PB 1121 in yield with comparable grain and cooking quality traits and herbicide tolerance similar to Robin. CONCLUSION: Overall, the present study reports successful development of HT NILs in the genetic background of popular Basmati rice variety, PB 1121 by introgression of mutated AHAS allele. This is the first report on the development of HT Basmati rice. Superior NILs are being evaluated in the national Basmati trials, the release of which is likely to provide a viable option for the adoption of DSR technology in Basmati rice cultivation.

13.
Plant J ; 103(4): 1525-1547, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32432802

RESUMO

Rice grain size and weight are major determinants of grain quality and yield and so have been under rigorous selection since domestication. However, the genetic basis for contrasting grain size/weight trait among Indian germplasms and their association with domestication-driven evolution is not well understood. In this study, two long (LGG) and two short grain (SGG) genotypes were resequenced. LGG (LGR and PB 1121) differentiated from SGG (Sonasal and Bindli) by 504 439 single nucleotide polymorphisms (SNPs) and 78 166 insertion-and-deletion polymorphisms. The LRK gene cluster was different and a truncation mutation in the LRK8 kinase domain was associated with LGG. Phylogeny with 3000 diverse rice accessions revealed that the four sequenced genotypes belonged to the japonica group and were at the edge of the clades indicating them to be the potential source of genetic diversity available in Indian rice germplasm. Six SNPs were significantly associated with grain size/weight and the top four of these could be validated in mapping a population, suggesting this study as a valuable resource for high-throughput genotyping. A contiguous long low-diversity region (LDR) of approximately 6 Mb carrying a major grain weight quantitative trait loci (harbouring OsTOR gene) was identified on Chromosome 5. This LDR was identified as an evolutionary important site with significant positive selection and multiple selection sweeps, and showed association with many domestication-related traits, including grain size/weight. The aus population retained more allelic variations in the LDR than the japonica and indica populations, suggesting it to be one of the divergence loci. All the data and analyses can be accessed from the RiceSzWtBase database.


Assuntos
Grão Comestível/genética , Oryza/genética , Polimorfismo Genético/genética , Locos de Características Quantitativas/genética , Domesticação , Grão Comestível/anatomia & histologia , Variação Genética/genética , Estudo de Associação Genômica Ampla , Mutação INDEL/genética , Oryza/anatomia & histologia , Filogenia , Polimorfismo Genético/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável
14.
Front Genet ; 11: 213, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391041

RESUMO

Micronutrient malnutrition due to Fe and Zn, affects around two billion people globally particularly in the developing countries. More than 90% of the Asian population is dependent on rice-based diets, which is low in these micronutrients. In the present study, a set of 192 Indian rice germplasm accessions, grown at two locations, were evaluated for Fe and Zn in brown rice (BR) and milled rice (MR). A significant variation was observed in the rice germplasm for these micronutrients. The grain Fe concentration was in the range of 6.2-23.1 ppm in BR and 0.8-12.3 ppm in MR, while grain Zn concentration was found to be in the range of 11.0-47.0 ppm and 8.2-40.8 ppm in the BR and MR, respectively. Grain Fe exhibited maximum loss upon milling with a mean retention of 24.9% in MR, while Zn showed a greater mean retention of 74.2% in MR. A genome-wide association study (GWAS) was carried out implementing the FarmCPU model to control the population structure and kinship, and resulted in the identification of 29 marker-trait associations (MTAs) with significant associations for traits viz. FeBR (6 MTAs), FeMR (7 MTAs), ZnBR (11 MTAs), and ZnMR (5 MTAs), which could explain the phenotypic variance from 2.1 to as high as 53.3%. The MTAs governing the correlated traits showed co-localization, signifying the possibility of their simultaneous improvement. The robust MTAs identified in the study could be valuable resource for enhancing Fe and Zn concentration in the rice grain and addressing the problem of Fe and Zn malnutrition among rice consumers.

15.
Food Chem ; 278: 773-779, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30583442

RESUMO

The effect of vacuum packing and ambient storage conditions on the stability of the ß-carotene in the transgenic Golden Rice® lines was studied. The ß-carotene was quantified using RP-HPLC at bimonthly intervals for a period of six months. The ß-carotene concentration in the genotypes analyzed ranged from 7.13 to 22.81 µg/g of endosperm. The transgene being the same in all the genotypes, variation in the ß-carotene concentration reflects on the genetic background of the rice variety and the transgene position that governed the differential accumulation of ß-carotene. It was observed that in the absence of light, oxidative degradation is higher followed by thermal degradation. Weibull model with higher R2 best explained the degradation kinetics of ß-carotene in Golden Rice® lines across all the storage conditions. The knowledge generated through this study can be utilized in devising an effective delivery system for Golden Rice® to the consumer.


Assuntos
Armazenamento de Alimentos/métodos , Oryza/metabolismo , Plantas Geneticamente Modificadas/metabolismo , beta Caroteno/metabolismo , Endosperma/genética , Endosperma/metabolismo , Embalagem de Alimentos/métodos , Cinética , Luz , Modelos Biológicos , Oryza/genética , Plantas Geneticamente Modificadas/genética , Transgenes
16.
Front Plant Sci ; 8: 2013, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29230233

RESUMO

Fusarium fujikuroi causing bakanae disease has emerged as one of the major pathogen of rice across the world. The study aims to comparative genomic analysis of Fusarium fujikuroi isolates and identification of the secretary proteins of the fungus involved in rice pathogenesis. In the present study, F. fujikuroi isolate "F250" was sequenced with an assembly size of 42.47 Mb providing coverage of 96.89% on reference IMI58289 genome. A total of 13,603 protein-coding genes were predicted from genome assembly. The average gene density in the F. fujikuroi genome was 315.10 genes per Mb with an average gene length of 1.67 kb. Additionally, 134,374 single nucleotide polymorphisms (SNPs) are identified against IMI58289 isolate, with an average SNP density of 3.11 per kb of genome. Repetitive elements represent approximately 270,550 bp, which is 0.63% of the total genome. In total, 3,109 simple sequence repeats (SSRs), including 302 compound SSRs are identified in the 8,656 scaffolds. Comparative analysis of the isolates of F. fujikuroi revealed that they shared a total of 12,240 common clusters with F250 showing higher similarity with IMI58289. A total of 1,194 secretory proteins were identified in its genome among which there were 356 genes encoding carbohydrate active enzymes (CAZymes) capable for degradation of complex polysaccharides. Out of them glycoside hydrolase (GH) families were most prevalent (41%) followed by carbohydrate esterase (CE). Out of them CE8 (4 genes), PL1 (10 genes), PL3 (5 genes), and GH28 (8 genes) were prominent plant cell wall degrading enzymes families in F250 secretome. Besides this, 585 genes essential for the pathogen-host interactions were also identified. Selected genes were validated through quantitative real-time PCR analyses in resistant and susceptible genotypes of rice at different days of inoculation. The data offers a better understanding of F. fujikuroi genome and will help us enhance our knowledge on Fusarium fujikuroi-rice interactions.

17.
Plant Sci ; 242: 330-341, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26566849

RESUMO

Marker assisted backcross breeding was employed to incorporate the blast resistance genes, Pi2 and Pi54 and bacterial blight (BB) resistance genes xa13 and Xa21 into the genetic background of Pusa Basmati 1121 (PB1121) and Pusa Basmati 6. Foreground selection for target gene(s) was followed by arduous phenotypic and background selection which fast-tracked the recovery of recurrent parent genome (RPG) to an extent of 95.8% in one of the near-isogenic lines (NILs) namely, Pusa 1728-23-33-31-56, which also showed high degree of resemblance to recurrent parent, PB6 in phenotype. The phenotypic selection prior to background selection provided an additional opportunity for identifying the novel recombinants viz., Pusa 1884-9-12-14 and Pusa 1884-3-9-175, superior to parental lines in terms of early maturity, higher yield and improved quality parameters. There was no significant difference between the RPG recovery estimated based on SSR or SNP markers, however, the panel of SNPs markers was considered as the better choice for background selection as it provided better genome coverage and included SNPs in the genic regions. Multi-location evaluation of NILs depicted their stable and high mean performance in comparison to the respective recurrent parents. The Pi2+Pi54 carrying NILs were effective in combating a pan-India panel of Magnaporthe oryzae isolates with high level of field resistance in northern, eastern and southern parts of India. Alongside, the PB1121-NILs and PB6-NILs carrying BB resistance genes xa13+Xa21 were resistant against Xanthomonas oryzae pv. oryzae races of north-western, southern and eastern parts of the country. Three of NILs developed in this study, have been promoted to final stage of testing during the ​Kharif 2015 in the Indian National Basmati Trial.


Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Oryza/genética , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Genótipo , Interações Hospedeiro-Patógeno , Índia , Magnaporthe/fisiologia , Repetições de Microssatélites , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Seleção Artificial , Xanthomonas/fisiologia
18.
Theor Appl Genet ; 128(7): 1243-59, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25869921

RESUMO

KEY MESSAGE: A set of NILs carrying major blast resistance genes in a Basmati rice variety has been developed. Also, the efficacy of pyramids over monogenic NILs against rice blast pathogen Magnaporthe oryzae has been demonstrated. Productivity and quality of Basmati rice is severely affected by rice blast disease. Major genes and QTLs conferring resistance to blast have been reported only in non-Basmati rice germplasm. Here, we report incorporation of seven blast resistance genes from the donor lines DHMASQ164-2a (Pi54, Pi1, Pita), IRBLz5-CA (Pi2), IRBLb-B (Pib), IRBL5-M (Pi5) and IRBL9-W (Pi9) into the genetic background of an elite Basmati rice variety Pusa Basmati 1 (PB1). A total of 36 near-isogenic lines (NILs) comprising of 14 monogenic, 16 two-gene pyramids and six three-gene pyramids were developed through marker-assisted backcross breeding (MABB). Foreground, recombinant and background selection was used to identify the plants with target gene(s), minimize the linkage drag and increase the recurrent parent genome (RPG) recovery (93.5-98.6 %), respectively, in the NILs. Comparative analysis performed using 50,051 SNPs and 500 SSR markers revealed that the SNPs provided better insight into the RPG recovery. Most of the monogenic NILs showed comparable performance in yield and quality, concomitantly, Pusa1637-18-7-6-20 (Pi9), was significantly superior in yield and stable across four different environments as compared to recurrent parent (RP) PB1. Further, among the pyramids, Pusa1930-12-6 (Pi2+Pi5) showed significantly higher yield and Pusa1633-7-8-53-6-8 (Pi54+Pi1+Pita) was superior in cooking quality as compared to RP PB1. The NILs carrying gene Pi9 were found to be the most effective against the concoction of virulent races predominant in the hotspot locations for blast disease. Conversely, when analyzed under artificial inoculation, three-gene pyramids expressed enhanced resistance as compared to the two-gene and monogenic NILs.


Assuntos
Resistência à Doença/genética , Magnaporthe/patogenicidade , Oryza/genética , Doenças das Plantas/genética , Agricultura , Cruzamento , Culinária , DNA de Plantas/genética , Qualidade dos Alimentos , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Genótipo , Repetições de Microssatélites , Oryza/classificação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
19.
AoB Plants ; 2012: pls029, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23125910

RESUMO

BACKGROUND AND AIMS: Basmati rice grown in the Indian subcontinent is highly valued for its unique culinary qualities. Production is, however, often constrained by diseases such as bacterial blight (BB), blast and sheath blight (ShB). The present study developed Basmati rice with inbuilt resistance to BB, blast and ShB using molecular marker-assisted selection. METHODOLOGY: The rice cultivar 'Improved Pusa Basmati 1' (carrying the BB resistance genes xa13 and Xa21) was used as the recurrent parent and cultivar 'Tetep' (carrying the blast resistance gene Pi54 and ShB resistance quality trait loci (QTL), qSBR11-1) was the donor. Marker-assisted foreground selection was employed to identify plants possessing resistance alleles in the segregating generations along with stringent phenotypic selection for faster recovery of the recurrent parent genome (RPG) and phenome (RPP). Background analysis with molecular markers was used to estimate the recovery of RPG in improved lines. PRINCIPAL RESULTS: Foreground selection coupled with stringent phenotypic selection identified plants homozygous for xa13, Xa21 and Pi54, which were advanced to BC(2)F(5) through pedigree selection. Marker-assisted selection for qSBR11-1 in BC(2)F(5) using flanking markers identified seven homozygous families. Background analysis revealed that RPG recovery was up to 89.5%. Screening with highly virulent isolates of BB, blast and ShB showed that the improved lines were resistant to all three diseases and were on a par with 'Improved Pusa Basmati 1' for yield, duration and Basmati grain quality. CONCLUSIONS: This is the first report of marker-assisted transfer of genes conferring resistance to three different diseases in rice wherein genes xa13 and Xa21 for BB resistance, Pi54 for blast resistance, and a major QTL qSBR11-1 have been combined through marker-assisted backcross breeding. In addition to offering the potential for release as cultivars, the pyramided lines will serve as useful donors of gene(s) for BB, blast and ShB in future Basmati rice breeding programmes.

20.
J Biosci ; 37(5): 829-41, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23107919

RESUMO

Advances in DNA sequencing provide tools for efficient large-scale discovery of markers for use in plants. Discovery options include large-scale amplicon sequencing, transcriptome sequencing, gene-enriched genome sequencing and whole genome sequencing. Examples of each of these approaches and their potential to generate molecular markers for specific applications have been described. Sequencing the whole genome of parents identifies all the polymorphisms available for analysis in their progeny. Sequencing PCR amplicons of sets of candidate genes from DNA bulks can be used to define the available variation in these genes that might be exploited in a population or germplasm collection. Sequencing of the transcriptomes of genotypes varying for the trait of interest may identify genes with patterns of expression that could explain the phenotypic variation. Sequencing genomic DNA enriched for genes by hybridization with probes for all or some of the known genes simplifies sequencing and analysis of differences in gene sequences between large numbers of genotypes and genes especially when working with complex genomes. Examples of application of the above-mentioned techniques have been described.


Assuntos
Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plantas Comestíveis/genética , Polimorfismo de Nucleotídeo Único , Cruzamento , Mapeamento de Sequências Contíguas , Epigênese Genética , Expressão Gênica , Marcadores Genéticos , Biblioteca Genômica , Genótipo , Hibridização Genética , Fenótipo , Locos de Características Quantitativas , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA