Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
R Soc Open Sci ; 4(9): 170427, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28989753

RESUMO

In this study, cobalt sulfide (CoS) electrodes are synthesized using various solvents such as water, ethanol and a combination of the two via a facile chemical bath deposition method on Ni foam. The crystalline nature, chemical states and surface morphology of the prepared CoS nanoparticles are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transition electron microscopy. The electrochemical properties of CoS electrodes are also evaluated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. When used as an electrode for a supercapacitor, CoS prepared with ethanol as a solvent exhibits a capacitance of 41.36 F g-1 at 1.5 A g-1, which is significantly better than that prepared using water and water/ethanol-based solvents (31.66 and 18.94 F g-1 at 1.5 A g-1, respectively). This superior capacitance is attributed to the ideal surface morphology of the solvent, which allows for easy diffusion of electrolyte ions into the inner region of the electrode. High electrical conduction enables a high rate capability. These results suggest that CoS nanoparticles are highly promising for energy storage applications as well as photocatalysis, electrocatalysis, water splitting and solar cells, among others. These results show that CoS is a promising positive electrode material for practical supercapacitors.

2.
Dalton Trans ; 46(38): 12876-12883, 2017 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-28920984

RESUMO

Herein, we tailor the surface morphology of nickel-manganese-layered double hydroxide (NiMn-LDH) nanostructures on 3D nickel-foam via a step-wise cobalt (Co)-doping hydrothermal chemical process. At the 10% optimum level of Co-doping, we noticed a thriving tuned morphological pattern of NiMn-LDH nanostructures (NiCoMn-LDH (10%)) in terms of the porosity of the nanosheet (NS) arrays which not only improves the rate capability as well as cycling stability, but also demonstrates nearly two-fold specific capacitance enhancement compared to Co-free and other NiCoMn-LDH electrodes with a half-cell configuration in 3 M KOH, suggesting that Co-doping is indispensable for improving the electrochemical performance of NiMn-LDH electrodes. Moreover, when this high performing NiCoMn-LDH (10%) electrode is employed as a cathode material to fabricate an asymmetric supercapacitor (ASC) device with reduced graphene oxide (rGO) as an anode material, excellent energy storage performance (57.4 Wh kg-1 at 749.9 W kg-1) and cycling stability (89.4% capacitive retention even after 2500 cycles) are corroborated. Additionally, we present a demonstration of illuminating a light emitting diode for 600 s with the NiCoMn-LDH (10%)//rGO ASC device, evidencing the potential of the NiCoMn-LDH (10%) electrode in fabricating energy storage devices.

3.
Dalton Trans ; 45(32): 12914-23, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477125

RESUMO

Charge recombination occurring at the TiO2/QDs/electrolyte interface is a crucial factor that limits the power conversion efficiency (η) of quantum dot-sensitized solar cells (QDSSCs). This paper presents a new approach by inserting a ZnS layer between the TiO2 and CdS/ZnS to prepare a TiO2/ZnS/CdS/ZnS sensitized photoelectrode for QDSSC applications. The CdS QDs and ZnS passivation layers were deposited using a reproducible and controlled successive ionic layer adsorption and reaction method. The TiO2/ZnS/CdS/ZnS based QDSSCs exhibited a power conversion efficiency (η) value of 3.69%, which is significantly higher than the 3.02% and 2.09% observed for solar cells with a TiO2/CdS/ZnS device and without a passivation layer (TiO2/CdS), respectively. The elevated performance of the TiO2/ZnS/CdS/ZnS-based QDSSCs was attributed to the pre-assembled ZnS layer enhancing the light harvesting and acting as a blocking layer to shield the TiO2 core from the outer QDs and the electrolyte, thereby retarding the interfacial recombination of electrons from the TiO2 with the electrolyte or with the QDs. Electrochemical impedance spectroscopy and open circuit voltage decay measurements showed that the TiO2/ZnS/CdS/ZnS-based QDSSCs inhibit charge recombination remarkably at the photoanode/electrolyte interface and prolong the electron lifetime.

4.
Dalton Trans ; 45(31): 12362-71, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27418015

RESUMO

Great attention has been paid to the design and synthesis of distinct core/shell heterostructures for high-performance supercapacitors. We have prepared unique heterostructures consisting of polyimidazole-coated copper sulphide over a carbon nanotube network (CuS@CNT) on nickel foam, which was accomplished through a facile and cost-effective solvothermal method combined with a dip coating process. Hexagonal covellite CuS nanoparticles were dispersed on CNTs using a solvothermal method where dimethylformamide and distilled water were used as solvents. The synthesized CuS and CuS@CNT supercapacitor electrode materials were thoroughly characterized. The polymer supported electrode (PIM/CuS@CNT) shows a high areal capacitance of 1.51 F cm(-2) at a current density of 1.2 A g(-1), which is higher than the CuS@CNT electrode and many other previously reported CuS electrode materials. After 1000 cycles at a high current density of 1.2 A g(-1), the retention rate is 92%, indicating good long-term cycling stability. These results indicate that the PIM/CuS@CNT electrode is promising for high-performance supercapacitor applications.

5.
Dalton Trans ; 45(20): 8447-57, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27111597

RESUMO

To make quantum dot-sensitized solar cells (QDSSCs) competitive, we investigated the effect of Ni(2+) ion incorporation into a CdS layer to create long-lived charge carriers and reduce the electron-hole recombination. The Ni(2+)-doped CdS (simplified as CdNiS) QD layer was introduced to a TiO2 surface via the simple successive ionic layer adsorption and reaction (SILAR) method in order to introduce intermediate-energy levels in the QDs. The effects of different Ni(2+) concentrations (5, 10, 15, and 20 mM) on the physical, chemical, and photovoltaic properties of the QDSSCs were investigated. The Ni(2+) dopant improves the light absorption of the device, accelerates the electron injection kinetics, and reduces the charge recombination, which results in improved charge transfer and collection. The 15% CdNiS cell exhibits the best photovoltaic performance with a power conversion efficiency (η) of 3.11% (JSC = 8.91 mA cm(-2), VOC = 0.643 V, FF = 0.543) under one full sun illumination (AM 1.5 G). These results are among the best achieved for CdS-based QDSSCs. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements confirm that the Ni(2+) dopant can suppress charge recombination, prolong the electron lifetime, and improve the power conversion efficiency of the cells.

6.
Dalton Trans ; 45(8): 3450-63, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26796086

RESUMO

To make quantum-dot sensitized solar cells (QDSSCs) competitive, photovoltaic parameters such as the power conversion efficiency (PCE) and fill factor (FF) must become comparable to those of other emerging solar cell technologies. In the present study, a novel strategy has been successfully developed for a highly efficient surface-modified platinum (Pt) counter electrode (CE) with high catalytic activity and long-term stability in a polysulfide redox electrolyte. The reinforcement of the Pt surface was performed using a thin passivating layer of CuS, NiS, or CoS by simple chemical bath deposition techniques. This method was a more efficient method for reducing the electron recombination in QDSSCs. The optimized Pt/CuS CE shows a very low charge transfer resistance of 37.01 Ω, which is an order of magnitude lower than those of bare Pt (86.32 Ω), Pt/NiS (53.83 Ω), and Pt/CoS (73.51 Ω) CEs. Therefore, the Pt/CuS CEs show much greater catalytic activity in the polysulfide redox electrolyte than Pt, Pt/NiS and Pt/CoS CEs. As a result, under one-sun illumination (AM 1.5G, 100 mW cm(-2)), the Pt/CuS CE exhibits a PCE of 4.32%, which is higher than the values of 1.77%, 2.95%, and 3.25% obtained with bare Pt, Pt/CoS, and Pt/NiS CEs, respectively. The performance of the Pt/CuS CE was enhanced by the improved current density, Cu vacancies with increased S composition, and surface morphology, which enable rapid electron transport and lower the electron recombination rate for the polysulfide electrolyte redox couple. Electrochemical impedance spectroscopy and Tafel polarization revealed that the hybrid CEs reduce interfacial recombination and exhibit better electrochemical and photovoltaic performance compared with a bare Pt CE. The Pt/CuS CE also shows superior stability in the polysulfide electrolyte in a working state for over 10 h, resulting in a long-term electrode stability than Pt CE.

7.
Dalton Trans ; 44(44): 19330-43, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26497705

RESUMO

For the first time we report a simple synthetic strategy to prepare copper sulfide counter electrodes on fluorine-doped tin oxide (FTO) substrates using the inexpensive chemical bath deposition method in the presence of hydrochloric acid (HCl) at different deposition times. CuS nanoplatelet structures were uniformly grown on the FTO substrate with a good dispersion and optimized conditions. The growth process of the CuS nanoplatelets can be controlled by changing the deposition time in the presence of HCl. HCl acts as a complexing agent as well as improving S(2-) concentration against S atoms in this one-step preparation. The photovoltaic performance was significantly improved in terms of the power conversion efficiency (PCE), short-circuit density (J(sc)), open-circuit voltage (V(oc)), and the fill factor (FF). The optimized deposition time of CuS 60 min resulted in a higher PCE of 4.06%, J(sc) of 12.92 mA cm(-2), V(oc) of 0.60 V, and a FF of 0.52 compared to CuS 50 min, CuS 70 min, and a Pt CE. The superior performance of the 60 min sample is due to the greater electrocatalytic activity and low charge transfer resistance at the interface of the CE and the polysulfide electrolyte. The concentration of Cu/S also had an important role in the formation of the CuS nanoplatelet structures. The optical bandgaps for the CuS with different morphologies were measured to be in the range of 1.98-2.28 eV. This improved photovoltaic performance is mainly attributed to the greater number of active reaction sites created by the CuS layer on the FTO substrate, which results large specific surface, superior electrical conductivity, low charge transfer resistance, and faster electron transport in the presence of HCl. Cyclic voltammetry, electrochemical impedance spectroscopy and Tafel-polarization measurements were used to investigate the electrocatalytic activity of the CuS and Pt CEs. This synthetic procedure not only provides high electrocatalytic activity for QDSSCs but could also be a cost-effective way to fabricate flexible electrodes in dye-sensitized solar cells or supercapacitor applications.

8.
Nanoscale ; 7(29): 12552-63, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26140442

RESUMO

To make quantum-dot-sensitized solar cells (QDSSCs) competitive, photovoltaic parameters comparable to those of other emerging solar cell technologies are necessary. In the present study, ZnSe was used as an alternative to ZnS, one of the most widely used passivation materials in QDSSCs. ZnSe was deposited on a TiO2-CdS-CdSe photoanode to form a core-shell structure, which was more efficient in terms of reducing the electron recombination in QDSSCs. The development of an efficient passivation layer is a requirement for preventing recombination processes in order to attain high-performance and stable QDSSCs. A layer of inorganic Mn-ZnSe was applied to a QD-sensitized photoanode to enhance the adsorption and strongly inhibit interfacial recombination processes in QDSSCs, which greatly improved the power conversion efficiency. Impedance spectroscopy revealed that the combined Mn doping with ZnSe treatment reduces interfacial recombination and increases charge collection efficiency compared with Mn-ZnS, ZnS, and ZnSe. A solar cell based on the CdS-CdSe-Mn-ZnSe photoanode yielded excellent performance with a solar power conversion efficiency of 5.67%, Voc of 0.584 V, and Jsc of 17.59 mA cm(-2). Enhanced electron transport and reduced electron recombination are responsible for the improved Jsc and Voc of the QDSSCs. The effective electron lifetime of the device with Mn-ZnSe was higher than those with Mn-ZnS, ZnSe, and ZnS, leading to more efficient electron-hole separation and slower electron recombination.

9.
Dalton Trans ; 44(28): 12852-62, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26102365

RESUMO

Currently, TiO2 on a fluorine-doped tin oxide substrate is the most commonly used type of photoelectrode in high-efficiency quantum dot-sensitized solar cells (QDSSCs). The power conversion efficiency (PCE) of TiO2 photoelectrodes is limited because of higher charge recombination and lower QD loading on the TiO2 film. This article describes the effect of a TiO2 compact layer on a TiO2 film to enhance the performance of QDSSCs. TiO2 nanoparticles were coated on an FTO substrate by the doctor-blade method and then the TiO2 compact layer was successfully fabricated on the surface of the nanoparticles by a simple hydrothermal method. QDSSCs were made using these films as photoelectrodes with NiS counter electrodes. Under one sun illumination (AM 1.5 G, 100 mW cm(-2)), the QDSSCs showed PCEs of 2.19 and 2.93% for TCL1 and TCL2 based photoelectrodes, which are higher than the 1.33% value obtained with bare TiO2. The compact-layer-coated film electrodes provide a lower charge-transfer resistance and higher light harvesting. The compact layer on the TiO2 film is a more efficient photocatalyst than pure TiO2 film and physically separates the injected electrons in the TiO2 from the positively charged CdS QD/electrolyte.

10.
Dalton Trans ; 44(25): 11340-51, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26011676

RESUMO

Currently, copper sulfide (CuS) is the most commonly used counter electrode (CE) in high-efficiency quantum dot-sensitized solar cells (QDSSCs) because of its superior electrocatalytic activity in the presence of polysulfide electrolyte. For the first time, CuS thin films were prepared by a facile chemical bath deposition method with different concentrations of polyvinylpyrrolidone (PVP) and directly used as CEs in QDSSCs without any further post treatment. The quantum dot photoanode with the optimized 0.25 mM PVP-based CuS CE exhibits higher short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), and power conversion efficiency (PCE) of 17.57 mA cm(-2), 0.578 V, 0.514, and 5.22%, respectively, which are much higher values than those of a bare CuS CE (Jsc: 12.36 mA cm(-2); Voc: 0.591 V; FF: 0.436; PCE: 3.18%) and Pt CE (Jsc: 11.25 mA cm(-2); Voc: 0.464 V; FF: 0.296; PCE: 1.54%) under one-sun illumination (AM 1.5 G, 100 mW cm(-2)). Moreover, the 0.25 mM PVP-based CuS CE produces a charge-transfer resistance of only 4.39 Ω with the aqueous polysulfide electrolyte commonly applied in QDSSCs. This value is several orders of magnitude lower than that of a typical Pt electrode (69.75 Ω) and bare CuS electrode (9.27 Ω). This enhancement is mainly attributed to the improved morphology of the 0.25 mM CuS CE with high catalytic activity, which plays a main role in the reduction processes of the oxidized polysulfide electrolyte, as well as the increased sulfur atomic percentage with Cu vacancies. Cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization were performed to study the underlying reasons behind the efficient CE performance.

11.
Dalton Trans ; 44(5): 2447-55, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25556975

RESUMO

In dye-sensitized solar cells (DSSCs), the TiO2 photoanode film plays an important role in increasing the power conversion efficiency. In this work, TiO2 nanoparticles were first coated on fluorine-doped tin oxide by the doctor-blade method, and then a thin film of zinc sulfide (ZnS) was successfully fabricated on the surface of the TiO2 nanoparticles using the successive ionic layer adsorption and reaction method. The performance of the DSSCs was examined in detail using a cobalt sulfide counter electrode and I(-)/I3(-) electrolyte. X-ray diffraction and energy dispersive X-ray spectroscopy measurements were used to find the composition of the films. Characterization with electrochemical impedance spectroscopy indicated that the recombination rate decreased drastically during the electron transportation. The DSSCs based on ZnS coated TiO2 photoanode achieved a power conversion efficiency of 5.90% under 1 sunlight illumination, which is higher than that of the bare TiO2 photoanode (4.43%). This suggests that the promising ZnS-coated TiO2 nanoparticles accumulate a large number of photo-injected electrons in the conduction band of the photoanode and the N719 dye lowers the recombination of photo-injected electrons with the redox electrolyte.

12.
Dalton Trans ; 44(2): 630-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25381887

RESUMO

This article describes the effect of manganese (Mn) doping in CdS to improve the photovoltaic performance of quantum dot sensitized solar cells (QDSSCs). The performances of the QDSSCs are examined in detail using a polysulfide electrolyte with a copper sulfide (CuS) counter electrode. Under the illumination of one sun (AM 1.5 G, 100 mW cm(-2)), 10 molar% Mn-doped CdS QDSSCs exhibit a power conversion efficiency (η) of 2.85%, which is higher than the value of 2.11% obtained with bare CdS. The improved photovoltaic performance is due to the impurities from Mn(2+) doping of CdS, which have an impact on the structure of the host material and decrease the surface roughness. The surface roughness and morphology of Mn-doped CdS nanoparticles can be characterised from atomic force microscopy images. Furthermore, the cell device based on the Mn-CdS electrode shows superior stability in the sulfide/polysulfide electrolyte in a working state for over 10 h, resulting in a highly reproducible performance, which is a serious challenge for the Mn-doped solar cell. Our finding provides an effective method for the fabrication of Mn-doped CdS QDs, which can pave the way to further improve the efficiency of future QDSSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA