Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS Pathog ; 20(2): e1012045, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416790

RESUMO

Protein ubiquitination is essential for cellular homeostasis and regulation of several processes, including cell division and genome integrity. Ubiquitin E3 ligases determine substrate specificity for ubiquitination, and Cullin-RING E3 ubiquitin ligases (CRLs) make the largest group among the ubiquitin E3 ligases. Although conserved and most studied in model eukaryotes, CRLs remain underappreciated in Plasmodium and related parasites. To investigate the CRLs of human malaria parasite Plasmodium falciparum, we generated parasites expressing tagged P. falciparum cullin-1 (PfCullin-1), cullin-2 (PfCullin-2), Rbx1 (PfRbx1) and Skp1 (PfSkp1). PfCullin-1 and PfCullin-2 were predominantly expressed in erythrocytic trophozoite and schizont stages, with nucleocytoplasmic localization and chromatin association, suggesting their roles in different cellular compartments and DNA-associated processes. Immunoprecipitation, in vitro protein-protein interaction, and ubiquitination assay confirmed the presence of a functional Skp1-Cullin-1-Fbox (PfSCF) complex, comprising of PfCullin-1, PfRbx1, PfSkp1, PfFBXO1, and calcyclin binding protein. Immunoprecipitation, sequence analysis, and ubiquitination assay indicated that PfCullin-2 forms a functional human CRL4-like complex (PfCRL4), consisting of PfRbx1, cleavage and polyadenylation specificity factor subunit_A and WD40 repeat proteins. PfCullin-2 knock-down at the protein level, which would hinder PfCRL4 assembly, significantly decreased asexual and sexual erythrocytic stage development. The protein levels of several pathways, including protein translation and folding, lipid biosynthesis and transport, DNA replication, and protein degradation were significantly altered upon PfCullin-2 depletion, which likely reflects association of PfCRL4 with multiple pathways. PfCullin-2-depleted schizonts had poorly delimited merozoites and internal membraned structures, suggesting a role of PfCRL4 in maintaining membrane integrity. PfCullin-2-depleted parasites had a significantly lower number of nuclei/parasite than the normal parasites, indicating a crucial role of PfCRL4 in cell division. We demonstrate the presence of functional CRLs in P. falciparum, with crucial roles for PfCRL4 in cell division and maintaining membrane integrity.


Assuntos
Plasmodium falciparum , Ubiquitina-Proteína Ligases , Humanos , Divisão Celular , Proteínas Culina/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Indian J Med Res ; 156(4&5): 659-668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36926783

RESUMO

Background & objectives: COVID-19 has been a global pandemic since early 2020. It has diverse clinical manifestations, but consistent immunological and metabolic correlates of disease severity and protection are not clear. This study was undertaken to compare seropositivity rate, antibody levels against nucleocapsid and spike proteins, virus neutralization and metabolites between adult and child COVID-19 patients. Methods: Plasma samples from naïve control (n=14) and reverse transcription (RT)-PCR positive COVID-19 participants (n=132) were tested for reactivity with nucleocapsid and spike proteins by ELISA, neutralization of SARS-CoV-2 infectivity in Vero cells and metabolites by [1]H nuclear magnetic resonance (NMR) spectroscopy. Results: An ELISA platform was developed using nucleocapsid and spike proteins for COVID-19 serosurvey. The participants showed greater seropositivity for nucleocapsid (72%) than spike (55.3%), and males showed higher seropositivity than females for both the proteins. Antibody levels to both the proteins were higher in intensive care unit (ICU) than ward patients. Children showed lower seropositivity and antibody levels than adults. In contrast to ICU adults (81.3%), ICU children (33.3%) showed lower seropositivity for spike. Notably, the neutralization efficiency correlated with levels of anti-nucleocapsid antibodies. The levels of plasma metabolites were perturbed differentially in COVID-19 patients as compared with the naive controls. Interpretation & conclusions: Our results reflect the complexity of human immune response and metabolome to SARS-CoV-2 infection. While innate and cellular immune responses are likely to be a major determinant of disease severity and protection, antibodies to multiple viral proteins likely affect COVID-19 pathogenesis. In children, not adults, lower seropositivity rate for spike was associated with disease severity.


Assuntos
COVID-19 , SARS-CoV-2 , Masculino , Feminino , Animais , Chlorocebus aethiops , Humanos , Criança , Células Vero , Glicoproteína da Espícula de Coronavírus , Formação de Anticorpos , Anticorpos Antivirais
3.
Biochem J ; 478(9): 1705-1732, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33843972

RESUMO

Autophagy, a lysosome-dependent degradative process, does not appear to be a major degradative process in malaria parasites and has a limited repertoire of genes. To better understand the autophagy process, we investigated Plasmodium falciparum Atg18 (PfAtg18), a PROPPIN family protein, whose members like S. cerevisiae Atg18 (ScAtg18) and human WIPI2 bind PI3P and play an essential role in autophagosome formation. Wild type and mutant PfAtg18 were expressed in P. falciparum and assessed for localization, the effect of various inhibitors and antimalarials on PfAtg18 localization, and identification of PfAtg18-interacting proteins. PfAtg18 is expressed in asexual erythrocytic stages and localized to the food vacuole, which was also observed with other Plasmodium Atg18 proteins, indicating that food vacuole localization is likely a shared feature. Interaction of PfAtg18 with the food vacuole-associated PI3P is essential for localization, as PfAtg18 mutants of PI3P-binding motifs neither bound PI3P nor localized to the food vacuole. Interestingly, wild type ScAtg18 interacted with PI3P, but its expression in P. falciparum showed complete cytoplasmic localization, indicating additional requirement for food vacuole localization. The food vacuole multi-drug resistance protein 1 (MDR1) was consistently identified in the immunoprecipitates of PfAtg18 and P. berghei Atg18, and also interacted with PfAtg18. In contrast with PfAtg18, ScAtg18 did not interact with MDR1, which, in addition to PI3P, could play a critical role in localization of PfAtg18. Chloroquine and amodiaquine caused cytoplasmic localization of PfAtg18, suggesting that these target PfAtg18 transport pathway. Thus, PI3P and MDR1 are critical mediators of PfAtg18 localization.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Vacúolos/metabolismo , Amodiaquina/farmacologia , Animais , Antimaláricos/farmacologia , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Transporte Biológico , Cloroquina/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Regulação da Expressão Gênica , Humanos , Malária/parasitologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA