Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Geroscience ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037528

RESUMO

Several studies have indicated that interrupted epigenetic reprogramming using Yamanaka transcription factors (OSKM) can rejuvenate cells from old laboratory animals and humans. However, the potential of OSKM-induced rejuvenation in brain tissue has been less explored. Here, we aimed to restore cognitive performance in 25.3-month-old female Sprague-Dawley rats using OSKM gene therapy for 39 days. Their progress was then compared with the cognitive performance of untreated 3.5-month-old rats as well as old control rats treated with a placebo adenovector. The Barnes maze test, used to assess cognitive performance, demonstrated enhanced cognitive abilities in old rats treated with OSKM compared to old control animals. In the treated old rats, there was a noticeable trend towards improved spatial memory relative to the old controls. Further, OSKM gene expression did not lead to any pathological alterations within the 39 days. Analysis of DNA methylation following OSKM treatment yielded three insights. First, epigenetic clocks for rats suggested a marginally significant epigenetic rejuvenation. Second, chromatin state analysis revealed that OSKM treatment rejuvenated the methylome of the hippocampus. Third, an epigenome-wide association analysis indicated that OSKM expression in the hippocampus of old rats partially reversed the age-related increase in methylation. In summary, the administration of Yamanaka genes via viral vectors rejuvenates the functional capabilities and the epigenetic landscape of the rat hippocampus.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38430547

RESUMO

There is converging evidence that young blood conveys cells, vesicles, and molecules able to revitalize function and restore organ integrity in old individuals. We assessed the effects of young plasma on the lifespan, epigenetic age, and healthspan of old female rats. Beginning at 25.6 months of age, a group of 9 rats (group T) was intraperitoneally injected with plasma from young rats until their natural death. A group of 8 control rats of the same age received no treatment (group C). Blood samples were collected every other week. Survival curves showed that from age 26 to 30 months, none of the group T animals died, whereas the survival curve of group C rats began to decline at age 26 months. Blood DNAm age versus chronological age showed that DNAm age in young animals increased faster than chronological age, then slowed down, entering a plateau after 27 months. The DNAm age of the treated rats fell below the DNAm age of controls and, in numerical terms, remained consistently lower until natural death. When rats were grouped according to the similarities in their differential blood DNA methylation profile, samples from the treated and control rats clustered in separate groups. Analysis of promoter differential methylation in genes involved in systemic regulatory activities revealed specific GO term enrichment related to the insulin-like factors pathways as well as to cytokines and chemokines associated with immune and homeostatic functions. We conclude that young plasma therapy may constitute a natural, noninvasive intervention for epigenetic rejuvenation and health enhancement.


Assuntos
Longevidade , Aparência Física , Feminino , Ratos , Animais , Longevidade/genética , Metilação de DNA , Envelhecimento/genética , Epigênese Genética
3.
Dev Psychobiol ; 66(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38533486

RESUMO

Exogenous oxytocin (OT) is widely used to induce or augment labor with little understanding of the impact on offspring development. In rodent models, including the prairie vole (Microtus ochrogaster), it has been shown that oxytocin administered to mothers can affect the nervous system of the offspring with long lasting behavioral effects especially on sociality. Here, we examined the hypothesis that perinatal oxytocin exposure could have epigenetic and transcriptomic consequences. Prairie voles were exposed to exogenous oxytocin, through injections given to the mother just prior to birth, and were studied at the time of weaning. The outcome of this study revealed increased epigenetic age in oxytocin-exposed animals compared to the saline-exposed group. Oxytocin exposure led to 900 differentially methylated CpG sites (annotated to 589 genes), and 2 CpG sites (2 genes) remained significantly different after correction for multiple comparisons. Differentially methylated CpG sites were enriched in genes known to be involved in regulation of gene expression and neurodevelopment. Using RNA-sequencing we also found 217 nominally differentially expressed genes (p<0.05) in nucleus accumbens, a brain region involved in reward circuitry and social behavior; after corrections for multiple comparisons 6 genes remained significantly differentially expressed. Finally, we found that maternal oxytocin administration led to widespread alternative splicing in the nucleus accumbens. These results indicate that oxytocin exposure during birth may have long lasting epigenetic consequences. A need for further investigation of how oxytocin administration impacts development and behavior throughout the lifespan is supported by these outcomes.


Assuntos
Ocitocina , Receptores de Ocitocina , Animais , Feminino , Gravidez , Masculino , Humanos , Ocitocina/metabolismo , Mães , Núcleo Accumbens/metabolismo , Comportamento Social , Epigênese Genética , Arvicolinae
4.
Geroscience ; 46(1): 367-394, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37875652

RESUMO

Young blood plasma is known to confer beneficial effects on various organs in mice and rats. However, it was not known whether plasma from young adult pigs rejuvenates old rat tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n = 613 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain, liver, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n = 1366 human tissue samples to the training data. We employed these six rat clocks to investigate the rejuvenation effects of a porcine plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers, behavioral responses encompassing cognitive functions. An immunoglobulin G (IgG) N-glycosylation pattern shift from pro- to anti-inflammatory also indicated reversal of glycan aging. Overall, this study demonstrates that a young porcine plasma-derived treatment markedly reverses aging in rats according to epigenetic clocks, IgG glycans, and other biomarkers of aging.


Assuntos
Envelhecimento , Epigênese Genética , Humanos , Ratos , Camundongos , Animais , Suínos , Envelhecimento/fisiologia , Biomarcadores , Plasma , Imunoglobulina G
5.
Sci Rep ; 13(1): 22260, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097614

RESUMO

Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide, particularly among individuals under the age of 45. It is a complex, and heterogeneous disease with a multifaceted pathophysiology that remains to be elucidated. Metabolomics has the potential to identify metabolic pathways and unique biochemical profiles associated with TBI. Herein, we employed a longitudinal metabolomics approach to study TBI in a weight drop mouse model to reveal metabolic changes associated with TBI pathogenesis, severity, and secondary injury. Using proton nuclear magnetic resonance (1H NMR) spectroscopy, we biochemically profiled post-mortem brain from mice that suffered mild TBI (N = 25; 13 male and 12 female), severe TBI (N = 24; 11 male and 13 female) and sham controls (N = 16; 11 male and 5 female) at baseline, day 1 and day 7 following the injury. 1H NMR-based metabolomics, in combination with bioinformatic analyses, highlights a few significant metabolites associated with TBI severity and perturbed metabolism related to the injury. We report that the concentrations of taurine, creatinine, adenine, dimethylamine, histidine, N-Acetyl aspartate, and glucose 1-phosphate are all associated with TBI severity. Longitudinal metabolic observation of brain tissue revealed that mild TBI and severe TBI lead distinct metabolic profile changes. A multi-class model was able to classify the severity of injury as well as time after TBI with estimated 86% accuracy. Further, we identified a high degree of correlation between respective hemisphere metabolic profiles (r > 0.84, p < 0.05, Pearson correlation). This study highlights the metabolic changes associated with underlying TBI severity and secondary injury. While comprehensive, future studies should investigate whether: (a) the biochemical pathways highlighted here are recapitulated in the brain of TBI sufferers and (b) if the panel of biomarkers are also as effective in less invasively harvested biomatrices, for objective and rapid identification of TBI severity and prognosis.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Masculino , Feminino , Camundongos , Animais , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Metabolômica/métodos , Metaboloma , Prognóstico , Concussão Encefálica/complicações
6.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935424

RESUMO

SUMMARY: The interpretation of pathway enrichment analysis results is frequently complicated by an overwhelming and redundant list of significantly affected pathways. Here, we present an R package aPEAR (Advanced Pathway Enrichment Analysis Representation) which leverages similarities between the pathway gene sets and represents them as a network of interconnected clusters. Each cluster is assigned a meaningful name that highlights the main biological themes in the experiment. Our approach enables an automated and objective overview of the data without manual and time-consuming parameter tweaking. AVAILABILITY AND IMPLEMENTATION: The package aPEAR is implemented in R, published under the MIT open-source licence. The source code, documentation, and usage instructions are available on https://gitlab.com/vugene/aPEAR as well as on CRAN (https://CRAN.R-project.org/package=aPEAR).


Assuntos
Documentação , Software
7.
Genes (Basel) ; 14(9)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37761892

RESUMO

The impact of environmental factors on epigenetic changes is well established, and cellular function is determined not only by the genome but also by interacting partners such as metabolites. Given the significant impact of metabolism on disease progression, exploring the interaction between the metabolome and epigenome may offer new insights into Huntington's disease (HD) diagnosis and treatment. Using fourteen post-mortem HD cases and fourteen control subjects, we performed metabolomic profiling of human postmortem brain tissue (striatum and frontal lobe), and we performed DNA methylome profiling using the same frontal lobe tissue. Along with finding several perturbed metabolites and differentially methylated loci, Aminoacyl-tRNA biosynthesis (adj p-value = 0.0098) was the most significantly perturbed metabolic pathway with which two CpGs of the SEPSECS gene were correlated. This study improves our understanding of molecular biomarker connections and, importantly, increases our knowledge of metabolic alterations driving HD progression.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Huntington , Humanos , Encéfalo/metabolismo , Doença de Huntington/genética , Metaboloma , Metilação , RNA de Transferência/biossíntese , Aminoacil-tRNA Sintetases/genética
8.
bioRxiv ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609328

RESUMO

Young blood plasma is known to confer beneficial effects on various organs in mice and rats. However, it was not known whether plasma from young pigs rejuvenates old rat tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n=613 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain-, liver-, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n=1366 human tissue samples to the training data. We employed these six rat clocks to investigate the rejuvenation effects of a porcine plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers and behavioral responses to assess cognitive functions. An immunoglobulin G (IgG) N-glycosylation pattern shift from pro- to anti-inflammatory also indicated reversal of glycan aging. Overall, this study demonstrates that a young porcine plasma-derived treatment markedly reverses aging in rats according to epigenetic clocks, IgG glycans, and other biomarkers of aging.

9.
Aging Cell ; 22(10): e13964, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37594403

RESUMO

Bloom syndrome (BSyn) is an autosomal recessive disorder caused by variants in the BLM gene, which is involved in genome stability. Patients with BSyn present with poor growth, sun sensitivity, mild immunodeficiency, diabetes, and increased risk of cancer, most commonly leukemias. Interestingly, patients with BSyn do not have other signs of premature aging such as early, progressive hair loss and cataracts. We set out to determine epigenetic age in BSyn, which can be a better predictor of health and disease over chronological age. Our results show for the first time that patients with BSyn have evidence of accelerated epigenetic aging across several measures in blood lymphocytes, as compared to carriers. Additionally, homozygous Blm mice exhibit accelerated methylation age in multiple tissues, including brain, blood, kidney, heart, and skin, according to the brain methylation clock. Overall, we find that Bloom syndrome is associated with accelerated epigenetic aging effects in multiple tissues and more generally a strong effect on CpG methylation levels.


Assuntos
Senilidade Prematura , Síndrome de Bloom , Humanos , Animais , Camundongos , Síndrome de Bloom/genética , Síndrome de Bloom/diagnóstico , Epigênese Genética , Envelhecimento/genética , Senilidade Prematura/genética , Metilação , Metilação de DNA/genética
10.
Proc Natl Acad Sci U S A ; 120(31): e2308798120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487074

RESUMO

Mammalian infants depend on parental care for survival, with numerous consequences for their behavioral development. We investigated the epigenetic and neurodevelopmental mechanisms mediating the impact of early biparental care on development of alloparenting behavior, or caring for offspring that are not one's own. We find that receiving high parental care early in life leads to slower epigenetic aging of both sexes and widespread male-specific differential expression of genes related to synaptic transmission and autism in the nucleus accumbens. Examination of parental care composition indicates that high-care fathers promote a male-specific increase in excitatory synapses and increases in pup retrieval behavior as juveniles. Interestingly, females raised by high-care fathers have the opposite behavioral response and display fewer pup retrievals. These results support the concept that neurodevelopmental trajectories are programmed by different features of early-life parental care and reveal that male neurodevelopmental processes are uniquely sensitive to care by fathers.


Assuntos
Comportamento Animal , Pai , Humanos , Feminino , Animais , Masculino , Comportamento Animal/fisiologia , Comportamento Materno/fisiologia , Núcleo Accumbens , Pais , Comportamento Paterno , Arvicolinae/fisiologia
11.
Sci Adv ; 8(42): eabq2226, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260670

RESUMO

Aging is associated with an increased risk of frailty, disability, and mortality. Strategies to delay the degenerative changes associated with aging and frailty are particularly interesting. We treated old animals with small extracellular vesicles (sEVs) derived from adipose mesenchymal stem cells (ADSCs) of young animals, and we found an improvement in several parameters usually altered with aging, such as motor coordination, grip strength, fatigue resistance, fur regeneration, and renal function, as well as an important decrease in frailty. ADSC-sEVs induced proregenerative effects and a decrease in oxidative stress, inflammation, and senescence markers in muscle and kidney. Moreover, predicted epigenetic age was lower in tissues of old mice treated with ADSC-sEVs and their metabolome changed to a youth-like pattern. Last, we gained some insight into the microRNAs contained in sEVs that might be responsible for the observed effects. We propose that young sEV treatment can promote healthy aging.

12.
Sci Adv ; 8(37): eabo5482, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112674

RESUMO

Development is tightly connected to aging, but whether pharmacologically targeting development can extend life remains unknown. Here, we subjected genetically diverse UMHET3 mice to rapamycin for the first 45 days of life. The mice grew slower and remained smaller than controls for their entire lives. Their reproductive age was delayed without affecting offspring numbers. The treatment was sufficient to extend the median life span by 10%, with the strongest effect in males, and helped to preserve health as measured by frailty index scores, gait speed, and glucose and insulin tolerance tests. Mechanistically, the liver transcriptome and epigenome of treated mice were younger at the completion of treatment. Analogous to mice, rapamycin exposure during development robustly extended the life span of Daphnia magna and reduced its body size. Overall, the results demonstrate that short-term rapamycin treatment during development is a novel longevity intervention that acts by slowing down development and aging, suggesting that aging may be targeted already early in life.


Assuntos
Insulinas , Longevidade , Animais , Daphnia/genética , Glucose , Masculino , Camundongos , Sirolimo/farmacologia
13.
Mov Disord ; 37(8): 1644-1653, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35723531

RESUMO

BACKGROUND: The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. OBJECTIVES: Here, we investigate whether the changes in the gut microbiome and associated metabolites are related to PD symptoms and epigenetic markers in leucocytes and neurons. METHODS: Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified genome-wide DNA methylation by targeted bisulfite sequencing. RESULTS: We show that lower fecal butyrate and reduced counts of genera Roseburia, Romboutsia, and Prevotella are related to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA regions in PD overlap with those altered in gastrointestinal (GI), autoimmune, and psychiatric diseases. CONCLUSIONS: Decreased levels of bacterially produced butyrate are related to epigenetic changes in leucocytes and neurons from PD patients and to the severity of their depressive symptoms. PD shares common butyrate-dependent epigenetic changes with certain GI and psychiatric disorders, which could be relevant for their epidemiological relation. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Butiratos , Depressão/genética , Epigênese Genética , Microbioma Gastrointestinal/genética , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Parkinson/microbiologia
14.
Cells ; 11(11)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35681440

RESUMO

Background: Despite extensive efforts, significant gaps remain in our understanding of Alzheimer's disease (AD) pathophysiology. Novel approaches using circulating cell-free DNA (cfDNA) have the potential to revolutionize our understanding of neurodegenerative disorders. Methods: We performed DNA methylation profiling of cfDNA from AD patients and compared them to cognitively normal controls. Six Artificial Intelligence (AI) platforms were utilized for the diagnosis of AD while enrichment analysis was used to elucidate the pathogenesis of AD. Results: A total of 3684 CpGs were significantly (adj. p-value < 0.05) differentially methylated in AD versus controls. All six AI algorithms achieved high predictive accuracy (AUC = 0.949−0.998) in an independent test group. As an example, Deep Learning (DL) achieved an AUC (95% CI) = 0.99 (0.95−1.0), with 94.5% sensitivity and specificity. Conclusion: We describe numerous epigenetically altered genes which were previously reported to be differentially expressed in the brain of AD sufferers. Genes identified by AI to be the best predictors of AD were either known to be expressed in the brain or have been previously linked to AD. We highlight enrichment in the Calcium signaling pathway, Glutamatergic synapse, Hedgehog signaling pathway, Axon guidance and Olfactory transduction in AD sufferers. To the best of our knowledge, this is the first reported genome-wide DNA methylation study using cfDNA to detect AD.


Assuntos
Doença de Alzheimer , Ácidos Nucleicos Livres , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Inteligência Artificial , Ácidos Nucleicos Livres/genética , Metilação de DNA/genética , Proteínas Hedgehog/metabolismo , Humanos
15.
Front Oncol ; 12: 790645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600397

RESUMO

Background: Lung cancer (LC) is a leading cause of cancer-deaths globally. Its lethality is due in large part to the paucity of accurate screening markers. Precision Medicine includes the use of omics technology and novel analytic approaches for biomarker development. We combined Artificial Intelligence (AI) and DNA methylation analysis of circulating cell-free tumor DNA (ctDNA), to identify putative biomarkers for and to elucidate the pathogenesis of LC. Methods: Illumina Infinium MethylationEPIC BeadChip array analysis was used to measure cytosine (CpG) methylation changes across the genome in LC. Six different AI platforms including support vector machine (SVM) and Deep Learning (DL) were used to identify CpG biomarkers and for LC detection. Training set and validation sets were generated, and 10-fold cross validation performed. Gene enrichment analysis using g:profiler and GREAT enrichment was used to elucidate the LC pathogenesis. Results: Using a stringent GWAS significance threshold, p-value <5x10-8, we identified 4389 CpGs (cytosine methylation loci) in coding genes and 1812 CpGs in non-protein coding DNA regions that were differentially methylated in LC. SVM and three other AI platforms achieved an AUC=1.00; 95% CI (0.90-1.00) for LC detection. DL achieved an AUC=1.00; 95% CI (0.95-1.00) and 100% sensitivity and specificity. High diagnostic accuracies were achieved with only intragenic or only intergenic CpG loci. Gene enrichment analysis found dysregulation of molecular pathways involved in the development of small cell and non-small cell LC. Conclusion: Using AI and DNA methylation analysis of ctDNA, high LC detection rates were achieved. Further, many of the genes that were epigenetically altered are known to be involved in the biology of neoplasms in general and lung cancer in particular.

16.
Front Neurosci ; 16: 804261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431771

RESUMO

Parkinson's disease (PD) is second most prevalent neurodegenerative disorder following Alzheimer's disease. Parkinson's disease is hypothesized to be caused by a multifaceted interplay between genetic and environmental factors. Herein, and for the first time, we describe the integration of metabolomics and epigenetics (genome-wide DNA methylation; epimetabolomics) to profile the frontal lobe from people who died from PD and compared them with age-, and sex-matched controls. We identified 48 metabolites to be at significantly different concentrations (FDR q < 0.05), 4,313 differentially methylated sites [5'-C-phosphate-G-3' (CpGs)] (FDR q < 0.05) and increased DNA methylation age in the primary motor cortex of people who died from PD. We identified Primary bile acid biosynthesis as the major biochemical pathway to be perturbed in the frontal lobe of PD sufferers, and the metabolite taurine (p-value = 5.91E-06) as being positively correlated with CpG cg14286187 (SLC25A27; CYP39A1) (FDR q = 0.002), highlighting previously unreported biochemical changes associated with PD pathogenesis. In this novel multi-omics study, we identify regulatory mechanisms which we believe warrant future translational investigation and central biomarkers of PD which require further validation in more accessible biomatrices.

17.
Neurobiol Dis ; 169: 105720, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35417751

RESUMO

BACKGROUND: Motor symptoms of Parkinson's disease (PD) are apparent after a high proportion of dopamine neurons in the substantia nigra have degenerated. The vast majority of PD cases are sporadic, and the underlying pathobiological causes are poorly understood. Adults exhibit great variability in the numbers of nigral dopamine neurons, suggesting that factors during embryonic or early life regulate the development and physiology of dopaminergic neurons. Furthermore, exposure to infections and inflammation in utero has been shown to affect fetal brain development in models of schizophrenia and autism. Here, we utilize a mouse maternal infection model to examine how maternal herpesvirus infection impacts dopaminergic neuron-related gene and protein expression in the adult offspring. METHODS: Pregnant mice were injected with murine cytomegalovirus (MCMV), murine gamma herpes virus-68 (MHV68) or phosphate buffered saline (PBS) at embryonic day 8.5. Offspring were sacrificed at eight weeks of age and midbrains were processed for whole genome RNA sequencing, DNA methylation analysis, targeted protein expression and high-performance liquid chromatography for quantification of dopamine and its metabolites. RESULTS: The midbrain of adult offspring from MHV68 infected dams had significantly decreased expression of genes linked to dopamine neurons (Th, Lmx1b, and Foxa1) and increased Lrrk2, a gene involved in familial PD and PD risk that associates with neuroinflammation. Deconvolution analysis revealed that the proportion of dopamine neuron genes in the midbrain was reduced. There was an overall increase in DNA methylation in the midbrain of animals from MHV68-infected dams and pathway analyses indicated mitochondrial dysfunction, with reductions in genes associated with ATP synthesis, mitochondrial respiratory chain, and mitochondrial translation in the offspring of dams infected with MHV68. TIGAR (a negative regulator of mitophagy) and SDHA (mitochondrial complex II subunit) protein levels were increased, and the levels of 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum were increased in these offspring compared to offspring from uninfected control dams. No such changes were observed in the offspring of dams infected with MCMV. CONCLUSION: Our data suggest that maternal infection with Herpesviridae, specifically MHV68, can trigger changes in the development of the midbrain that impact dopamine neuron physiology in adulthood. Our work is of importance for the understanding of neuronal susceptibility underlying neurodegenerative disease, with particular relevance for PD.


Assuntos
Infecções por Herpesviridae , Herpesviridae , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Feminino , Herpesviridae/metabolismo , Infecções por Herpesviridae/metabolismo , Mesencéfalo/metabolismo , Camundongos , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Gravidez , Substância Negra/metabolismo
18.
Front Cell Dev Biol ; 9: 727353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557494

RESUMO

Neuroblastoma (NB) is a pediatric cancer of the developing sympathetic nervous system that exhibits significant variation in the stage of differentiation and cell composition of tumors. Global loss of DNA methylation and genomic 5-hydroxymethylcytosine (5hmC) is a hallmark of human cancers. Here, we used our recently developed single-base resolution approaches, hmTOP-seq and uTOP-seq, for construction of 5hmC maps and identification of large partially methylated domains (PMDs) in different NB cell subpopulations. The 5hmC profiles revealed distinct signatures characteristic to different cell lineages and stages of malignant transformation of NB cells in a conventional and oxygen-depleted environment, which often occurs in tumors. The analysis of the cell-type-specific PMD distribution highlighted differences in global genome organization among NB cells that were ascribed to the same lineage identity by transcriptomic networks. Collectively, we demonstrated a high informativeness of the integrative epigenomic and transcriptomic research and large-scale genome structure in investigating the mechanisms that regulate cell identities and developmental stages of NB cells. Such multiomics analysis, as compared with mutational studies, open new ways for identification of novel disease-associated features which bring prognostic and therapeutic value in treating this aggressive pediatric disease.

19.
Nat Commun ; 12(1): 5134, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446734

RESUMO

The gastrointestinal tract may be a site of origin for α-synuclein pathology in idiopathic Parkinson's disease (PD). Disruption of the autophagy-lysosome pathway (ALP) may contribute to α-synuclein aggregation. Here we examined epigenetic alterations in the ALP in the appendix by deep sequencing DNA methylation at 521 ALP genes. We identified aberrant methylation at 928 cytosines affecting 326 ALP genes in the appendix of individuals with PD and widespread hypermethylation that is also seen in the brain of individuals with PD. In mice, we find that DNA methylation changes at ALP genes induced by chronic gut inflammation are greatly exacerbated by α-synuclein pathology. DNA methylation changes at ALP genes induced by synucleinopathy are associated with the ALP abnormalities observed in the appendix of individuals with PD specifically involving lysosomal genes. Our work identifies epigenetic dysregulation of the ALP which may suggest a potential mechanism for accumulation of α-synuclein pathology in idiopathic PD.


Assuntos
Apêndice/metabolismo , Autofagia , Epigênese Genética , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Animais , Apêndice/química , Encéfalo/metabolismo , Encéfalo/patologia , Metilação de DNA , Feminino , Humanos , Lisossomos/química , Lisossomos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/genética , Doença de Parkinson/patologia , Agregados Proteicos , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
20.
Clin Epigenetics ; 12(1): 153, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33081811

RESUMO

BACKGROUND: Massively parallel sequencing of maternal cell-free DNA (cfDNA) is widely used to test fetal genetic abnormalities in non-invasive prenatal testing (NIPT). However, sequencing-based approaches are still of high cost. Building upon previous knowledge that placenta, the main source of fetal circulating DNA, is hypomethylated in comparison to maternal tissue counterparts of cfDNA, we propose that targeting either unmodified or 5-hydroxymethylated CG sites specifically enriches fetal genetic material and reduces numbers of required analytical sequencing reads thereby decreasing cost of a test. METHODS: We employed uTOPseq and hmTOP-seq approaches which combine covalent derivatization of unmodified or hydroxymethylated CG sites, respectively, with next generation sequencing, or quantitative real-time PCR. RESULTS: We detected increased 5-hydroxymethylcytosine (5hmC) levels in fetal chorionic villi (CV) tissue samples as compared with peripheral blood. Using our previously developed uTOP-seq and hmTOP-seq approaches we obtained whole-genome uCG and 5hmCG maps of 10 CV tissue and 38 cfDNA samples in total. Our results indicated that, in contrast to conventional whole genome sequencing, such epigenomic analysis highly specifically enriches fetal DNA fragments from maternal cfDNA. While both our approaches yielded 100% accuracy in detecting Down syndrome in fetuses, hmTOP-seq maintained such accuracy at ultra-low sequencing depths using only one million reads. We identified 2164 and 1589 placenta-specific differentially modified and 5-hydroxymethylated regions, respectively, in chromosome 21, as well as 3490 and 2002 Down syndrome-specific differentially modified and 5-hydroxymethylated regions, respectively, that can be used as biomarkers for identification of Down syndrome or other epigenetic diseases of a fetus. CONCLUSIONS: uTOP-seq and hmTOP-seq approaches provide a cost-efficient and sensitive epigenetic analysis of fetal abnormalities in maternal cfDNA. The results demonstrated that T21 fetuses contain a perturbed epigenome and also indicated that fetal cfDNA might originate from fetal tissues other than placental chorionic villi. Robust covalent derivatization followed by targeted analysis of fetal DNA by sequencing or qPCR presents an attractive strategy that could help achieve superior sensitivity and specificity in prenatal diagnostics.


Assuntos
5-Metilcitosina/análogos & derivados , Ácidos Nucleicos Livres/sangue , Metilação de DNA/genética , Doenças Fetais/genética , Feto/metabolismo , Diagnóstico Pré-Natal/métodos , 5-Metilcitosina/metabolismo , Adulto , Síndrome de Down/diagnóstico , Síndrome de Down/genética , Epigenômica/métodos , Feminino , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Placenta/citologia , Placenta/metabolismo , Gravidez , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Trissomia/diagnóstico , Trissomia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA