Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Parasitol Res ; 123(1): 90, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195805

RESUMO

We provide the incidental necropsy findings associated with anisakid nematode infections of black noddy terns, Anous minutus Boie, 1844 (Charadriiformes: Laridae), from offshore islands in the southern Great Barrier Reef, Queensland, Australia. Specimens collected from the proventriculi were identified morphologically as Contracaecum magnipapillatum Chapin, 1925 (Rhabditida: Anisakidae), using light and scanning electron microscopy (SEM). The entire nuclear ribosomal DNA internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) was amplified by polymerase chain reaction (PCR) and sequenced to provide reference sequences for morphologically well-identified voucher specimens. Interestingly, after an alignment with closely related taxa using BLAST, sequences of the ITS1 and ITS2 were 100% identical to the sequences assigned to Contracaecum septentrionale Kreis, 1955, from a razorbill, Alca torda Linnaeus, 1758 (Charadriiformes: Alcidae), from Spain. These results either raise questions about the ITS as a genetic marker for some members of Contracaecum, or the identity of the specimens assigned to C. septentrionale, given that no supporting morphological data was associated with them. We highlight the need for a combined morphological and molecular approach to parasite diagnostics and the use of multiple genetic loci to resolve the molecular taxonomy of cryptic species. Morphological identifications should be taxonomically robust, transparent and precede the deposition of molecular barcodes in public repositories. The gross and histopathological findings of our investigation concur with previous reports of widespread Contracaecum infections in black noddies and support the contention that Contracaecum spp. are an unlikely primary cause of mortality.


Assuntos
Ascaridoidea , Charadriiformes , Animais , Austrália , Aves , Ascaridoidea/genética , Queensland
2.
J Wildl Dis ; 56(2): 359-371, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31658432

RESUMO

An epizootic of coccidiosis in free-ranging green turtles (Chelonia mydas) occurred in Australia in 1991 and the parasites were thought to be Caryospora cheloniae. Recurring outbreaks over an increased geographic range followed. We used medical records and temporal and spatial data of turtles diagnosed with coccidiosis between 1991 and 2014 to characterize the disease and factors associated with outbreaks. Most affected animals were subadults or older. Neurologic signs with intralesional cerebral coccidia were observed. Coccidia associated with inflammation and necrosis were predominantly found in the intestine, brain, kidney, and thyroid. Cases occurred in the spring and summer. Three major outbreaks (1991, 2002, and 2014) were concentrated in Port Stephens, New South Wales (NSW) and Moreton Bay, Queensland, but cases occurred as far south as Sydney, NSW. Coccidiosis cases were more likely during, or 1 mo prior to, El Niño-like events. Molecular characterization of the 18S rRNA locus of coccidia from tissues of 10 green turtles collected in 2002 and 2004 in Port Stevens and Sydney imply that they were Schellackia-like organisms. Two genotypes were identified. The Genotype 3 sequence was most common (in eight of 10 turtles), with 98.8% similarity to the 18S sequence of Schellackia orientalis. The Genotype 4 sequence was less common (in two of 10 turtles) with 99.7% similarity to the 18S sequence of the most common genotype (Genotype 1) detected in turtles from the 2014 Moreton Bay outbreak. Our study will help with the identification and management of future outbreaks and provide tools for identification of additional disease patterns in green turtles.


Assuntos
Coccídios/genética , Coccidiose/veterinária , Surtos de Doenças/veterinária , Tartarugas/parasitologia , Animais , Austrália , Clima , Coccidiose/epidemiologia , Ecossistema , Genótipo , Fatores de Tempo
3.
Int J Parasitol Parasites Wildl ; 7(2): 207-212, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29988481

RESUMO

Hepatocystis parasites are close relatives of mammalian Plasmodium species and infect a range of primates and bats. Here, we present the phylogenetic relationships of Hepatocystis parasites of three Australian flying fox species. Multilocus phylogenetic analysis revealed that Hepatocystis parasites of Pteropus species from Australia and Asia form a distinct clade that is sister to all other Hepatocystis parasites of primates and bats from Africa and Asia. No patterns of host specificity were recovered within the Pteropus-specific parasite clade and the Hepatocystis sequences from all three Australian host species sampled fell into two divergent clades.

4.
Int J Parasitol Parasites Wildl ; 4(2): 268-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26106576

RESUMO

This is a retrospective study of 38 cases of infection by Babesia macropus, associated with a syndrome of anaemia and debility in hand-reared or free-ranging juvenile eastern grey kangaroos (Macropus giganteus) from coastal New South Wales and south-eastern Queensland between 1995 and 2013. Infection with B. macropus is recorded for the first time in agile wallabies (Macropus agilis) from far north Queensland. Animals in which B. macropus infection was considered to be the primary cause of morbidity had marked anaemia, lethargy and neurological signs, and often died. In these cases, parasitised erythrocytes were few or undetectable in peripheral blood samples but were sequestered in large numbers within small vessels of visceral organs, particularly in the kidney and brain, associated with distinctive clusters of extraerythrocytic organisms. Initial identification of this piroplasm in peripheral blood smears and in tissue impression smears and histological sections was confirmed using transmission electron microscopy and molecular analysis. Samples of kidney, brain or blood were tested using PCR and DNA sequencing of the 18S ribosomal RNA and heat shock protein 70 gene using primers specific for piroplasms. The piroplasm detected in these samples had 100% sequence identity in the 18S rRNA region with the recently described Babesia macropus in two eastern grey kangaroos from New South Wales and Queensland, and a high degree of similarity to an unnamed Babesia sp. recently detected in three woylies (Bettongia penicillata ogilbyi) in Western Australia.

5.
J Vet Diagn Invest ; 24(2): 431-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22379060

RESUMO

A 5-year-old Australian stock horse in Monto, Queensland, Australia, developed neurological signs and was euthanized after a 6-day course of illness. Histological examination of the brain and spinal cord revealed moderate to severe subacute, nonsuppurative encephalomyelitis. Sections of spinal cord stained positively in immunohistochemistry with a flavivirus-specific monoclonal antibody. Reverse transcription polymerase chain reaction assay targeting the envelope gene of flavivirus yielded positive results from brain, spinal cord, cerebrospinal fluid, and facial nerve. A flavivirus was isolated from the cerebrum and spinal cord. Nucleotide sequences obtained from amplicons from both tissues and virus isolated in cell culture were compared with those in GenBank and had 96-98% identity with Murray Valley encephalitis virus. The partial envelope gene sequence of the viral isolate clustered into genotype 1 and was most closely related to a previous Queensland isolate.


Assuntos
Vírus da Encefalite do Vale de Murray/isolamento & purificação , Encefalite por Arbovirus/veterinária , Doenças dos Cavalos/virologia , Animais , Sequência de Bases , Vírus da Encefalite do Vale de Murray/genética , Vírus da Encefalite do Vale de Murray/imunologia , Encefalite por Arbovirus/imunologia , Encefalite por Arbovirus/virologia , Evolução Fatal , Doenças dos Cavalos/imunologia , Cavalos , Imuno-Histoquímica/veterinária , Dados de Sequência Molecular , Filogenia , Queensland , RNA Viral/química , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Alinhamento de Sequência , Análise de Sequência de DNA , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA