Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Appl Environ Microbiol ; : e0010824, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864629

RESUMO

The extremophile Deinococcus radiodurans maintains a highly organized and condensed nucleoid as its default state, possibly contributing to its high tolerance to ionizing radiation (IR). Previous studies of the D. radiodurans nucleoid were limited by reliance on manual image annotation and qualitative metrics. Here, we introduce a high-throughput approach to quantify the geometric properties of cells and nucleoids using confocal microscopy, digital reconstructions of cells, and computational modeling. We utilize this novel approach to investigate the dynamic process of nucleoid condensation in response to IR stress. Our quantitative analysis reveals that at the population level, exposure to IR induced nucleoid compaction and decreased the size of D. radiodurans cells. Morphological analysis and clustering identified six distinct sub-populations across all tested experimental conditions. Results indicate that exposure to IR induced fractional redistributions of cells across sub-populations to exhibit morphologies associated with greater nucleoid condensation and decreased the abundance of sub-populations associated with cell division. Nucleoid-associated proteins (NAPs) may link nucleoid compaction and stress tolerance, but their roles in regulating compaction in D. radiodurans are unknown. Imaging of genomic mutants of known and suspected NAPs that contribute to nucleoid condensation found that deletion of nucleic acid-binding proteins, not previously described as NAPs, can remodel the nucleoid by driving condensation or decondensation in the absence of stress and that IR increased the abundance of these morphological states. Thus, our integrated analysis introduces a new methodology for studying environmental influences on bacterial nucleoids and provides an opportunity to further investigate potential regulators of nucleoid condensation.IMPORTANCEDeinococcus radiodurans, an extremophile known for its stress tolerance, constitutively maintains a highly condensed nucleoid. Qualitative studies have described nucleoid behavior under a variety of conditions. However, a lack of quantitative data regarding nucleoid organization and dynamics has limited our understanding of the regulatory mechanisms controlling nucleoid organization in D. radiodurans. Here, we introduce a quantitative approach that enables high-throughput quantitative measurements of subcellular spatial characteristics in bacterial cells. Applying this to wild-type or single-protein-deficient populations of D. radiodurans subjected to ionizing radiation, we identified significant stress-responsive changes in cell shape, nucleoid organization, and morphology. These findings highlight this methodology's adaptability and capacity for quantitatively analyzing the cellular response to stressors for screening cellular proteins involved in bacterial nucleoid organization.

2.
J Microsc ; 293(1): 59-68, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38098170

RESUMO

Pseudomonas aeruginosa is a pathogen that forms robust biofilms which are commonly associated with chronic infections and cannot be successfully cleared by the immune system. Neutrophils, the most common white blood cells, target infections with pathogen-killing mechanisms that are rendered largely ineffective by the protective physicochemical structure of a biofilm. Visualisation of the complex interactions between immune cells and biofilms will advance understanding of how biofilms evade the immune system and could aid in developing treatment methods that promote immune clearance with minimal harm to the host. Scanning electron microscopy (SEM) distinguishes itself as a powerful, high-resolution tool for obtaining strikingly clear and detailed topographical images. However, taking full advantage of SEM's potential for high-resolution imaging requires that the fixation process simultaneously preserve both intricate biofilm architecture and the morphologies and structural signatures characterising neutrophils responses at an infection site. Standard aldehyde-based fixation techniques result in significant loss of biofilm matrix material and morphologies of responding immune cells, thereby obscuring the details of immune interactions with the biofilm matrix. Here we show an improved fixation technique using the cationic dye alcian blue to preserve and visualise neutrophil interactions with the three-dimensional architecture of P. aeruginosa biofilms. We also demonstrate that this technique better preserves structures of biofilms grown from two other bacterial species, Klebsiella pneumoniae and Burkholderia thailandensis.


Assuntos
Biofilmes , Neutrófilos , Microscopia Eletrônica de Varredura
3.
Langmuir ; 39(48): 17050-17058, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37972353

RESUMO

Biofilms are communities of interacting microbes embedded in a matrix of polymer, protein, and other materials. Biofilms develop distinct mechanical characteristics that depend on their predominant matrix components. These matrix components may be produced by microbes themselves or, for infections in vivo, incorporated from the host environment. Pseudomonas aeruginosa (P. aeruginosa) is a human pathogen that forms robust biofilms that extensively tolerate antibiotics and effectively evade clearance by the immune system. Two of the important bacterial-produced polymers in the matrices of P. aeruginosa biofilms are alginate and extracellular DNA (eDNA), both of which are anionic and therefore have the potential to interact electrostatically with cations. Many physiological sites of infection contain significant concentrations of the calcium ion (Ca2+). In this study, we investigate the structural and mechanical impacts of Ca2+ supplementation in alginate-dominated biofilms grown in vitro, and we evaluate the impact of targeted enzyme treatments on clearance by immune cells. We use multiple-particle tracking microrheology to evaluate the changes in biofilm viscoelasticity caused by treatment with alginate lyase or DNase I. For biofilms grown without Ca2+, we correlate a decrease in relative elasticity with increased phagocytic success. However, we find that growth with Ca2+ supplementation disrupts this correlation except in the case where both enzymes are applied. This suggests that the calcium cation may be impacting the microstructure of the biofilm in nontrivial ways. Indeed, confocal laser scanning fluorescence microscopy and scanning electron microscopy reveal unique Ca2+-dependent eDNA and alginate microstructures. Our results suggest that the presence of Ca2+ drives the formation of structurally and compositionally discrete microdomains within the biofilm through electrostatic interactions with the anionic matrix components eDNA and alginate. Further, we observe that these structures serve a protective function as the dissolution of both components is required to render biofilm bacteria vulnerable to phagocytosis by neutrophils.


Assuntos
Cálcio , Pseudomonas aeruginosa , Humanos , Cálcio/metabolismo , Pseudomonas aeruginosa/metabolismo , Neutrófilos/metabolismo , Alginatos , Biofilmes , Fagocitose , DNA/metabolismo
4.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961083

RESUMO

Biofilms are communities of interacting microbes embedded in a matrix of polymer, protein, and other materials. Biofilms develop distinct mechanical characteristics that depend on their predominant matrix components. These matrix components may be produced by microbes themselves or, for infections in vivo, incorporated from the host environment. Pseudomonas aeruginosa is a human pathogen that forms robust biofilms that extensively tolerate antibiotics and effectively evade clearance by the immune system. Two of the important bacterial-produced polymers in the matrices of P. aeruginosa biofilms are alginate and extracellular DNA (eDNA), both of which are anionic and therefore have the potential to interact electrostatically with cations. Many physiological sites of infection contain significant concentrations of the calcium ion (Ca2+). In this study we investigate the structural and mechanical impacts of Ca2+ supplementation in alginate-dominated biofilms grown in vitro and we evaluate the impact of targeted enzyme treatments on clearance by immune cells. We use multiple particle tracking microrheology to evaluate the changes in biofilm viscoelasticity caused by treatment with alginate lyase and/or DNAse I. For biofilms grown without Ca2+, we correlate a decrease in relative elasticity with increased phagocytic success. However, we find that growth with Ca2+ supplementation disrupts this correlation except in the case where both enzymes are applied. This suggests that the calcium cation may be impacting the microstructure of the biofilm in non-trivial ways. Indeed, confocal laser scanning fluorescence microscopy and scanning electron microscopy reveal unique Ca2+-dependent eDNA and alginate microstructures. Our results suggest that the presence of Ca2+ drives the formation of structurally and compositionally discrete microdomains within the biofilm through electrostatic interactions with the anionic matrix components eDNA and alginate. Further, we observe that these structures serve a protective function as the dissolution of both components is required to render biofilm bacteria vulnerable to phagocytosis by neutrophils.

5.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961328

RESUMO

Biofilms are communities of microbes embedded in a matrix of extracellular polymeric substances (EPS). Matrix components can be produced by biofilm organisms and can also originate from the environment and then be incorporated into the biofilm. For example, we have recently shown that collagen, a host-produced protein that is abundant in many different infection sites, can be taken up into the biofilm matrix, altering biofilm mechanics. The biofilm matrix protects bacteria from clearance by the immune system, and some of that protection likely arises from the mechanical properties of the biofilm. Pseudomonas aeruginosa and Staphylococcus aureus are common human pathogens notable for forming biofilm infections in anatomical sites rich in collagen. Here, we show that the incorporation of Type I collagen into P. aeruginosa and S. aureus biofilms significantly hinders phagocytosis of biofilm bacteria by human neutrophils. However, enzymatic treatment with collagenase, which breaks down collagen, can partly or entirely negate the protective effect of collagen and restore the ability of neutrophils to engulf biofilm bacteria. From these findings, we suggest that enzymatic degradation of host materials may be a potential way to compromise biofilm infections and enhance the efficacy of the host immune response without promoting antibiotic resistance. Such an approach might be beneficial both in cases where the infecting species is known and also in cases wherein biofilm components are not readily known, such as multispecies infections or infections by unknown species.

6.
NPJ Biofilms Microbiomes ; 9(1): 78, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816780

RESUMO

Attachment of bacteria onto a surface, consequent signaling, and accumulation and growth of the surface-bound bacterial population are key initial steps in the formation of pathogenic biofilms. While recent reports have hinted that surface mechanics may affect the accumulation of bacteria on that surface, the processes that underlie bacterial perception of surface mechanics and modulation of accumulation in response to surface mechanics remain largely unknown. We use thin and thick hydrogels coated on glass to create composite materials with different mechanics (higher elasticity for thin composites; lower elasticity for thick composites) but with the same surface adhesivity and chemistry. The mechanical cue stemming from surface mechanics is elucidated using experiments with the opportunistic human pathogen Pseudomonas aeruginosa combined with finite-element modeling. Adhesion to thin composites results in greater changes in mechanical stress and strain in the bacterial envelope than does adhesion to thick composites with identical surface chemistry. Using quantitative microscopy, we find that adhesion to thin composites also results in higher cyclic-di-GMP levels, which in turn result in lower motility and less detachment, and thus greater accumulation of bacteria on the surface than does adhesion to thick composites. Mechanics-dependent c-di-GMP production is mediated by the cell-surface-exposed protein PilY1. The biofilm lag phase, which is longer for bacterial populations on thin composites than on thick composites, is also mediated by PilY1. This study shows clear evidence that bacteria actively regulate differential accumulation on surfaces of different stiffnesses via perceiving varied mechanical stress and strain upon surface engagement.


Assuntos
GMP Cíclico , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/fisiologia , GMP Cíclico/metabolismo , Biofilmes , Transdução de Sinais
7.
Front Cell Infect Microbiol ; 13: 1102199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875516

RESUMO

Biofilms are viscoelastic materials that are a prominent public health problem and a cause of most chronic bacterial infections, in large part due to their resistance to clearance by the immune system. Viscoelastic materials combine both solid-like and fluid-like mechanics, and the viscoelastic properties of biofilms are an emergent property of the intercellular cohesion characterizing the biofilm state (planktonic bacteria do not have an equivalent property). However, how the mechanical properties of biofilms are related to the recalcitrant disease that they cause, specifically to their resistance to phagocytic clearance by the immune system, remains almost entirely unstudied. We believe this is an important gap that is ripe for a large range of investigations. Here we present an overview of what is known about biofilm infections and their interactions with the immune system, biofilm mechanics and their potential relationship with phagocytosis, and we give an illustrative example of one important biofilm-pathogen (Pseudomonas aeruginosa) which is the most-studied in this context. We hope to inspire investment and growth in this relatively-untapped field of research, which has the potential to reveal mechanical properties of biofilms as targets for therapeutics meant to enhance the efficacy of the immune system.


Assuntos
Fagócitos , Fagocitose , Biofilmes , Cinética , Pseudomonas aeruginosa
8.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747833

RESUMO

The attachment of bacteria onto a surface, consequent signaling, and the accumulation and growth of the surface-bound bacterial population are key initial steps in the formation of pathogenic biofilms. While recent reports have hinted that the stiffness of a surface may affect the accumulation of bacteria on that surface, the processes that underlie bacterial perception of and response to surface stiffness are unknown. Furthermore, whether, and how, the surface stiffness impacts biofilm development, after initial accumulation, is not known. We use thin and thick hydrogels to create stiff and soft composite materials, respectively, with the same surface chemistry. Using quantitative microscopy, we find that the accumulation, motility, and growth of the opportunistic human pathogen Pseudomonas aeruginosa respond to surface stiffness, and that these are linked through cyclic-di-GMP signaling that depends on surface stiffness. The mechanical cue stemming from surface stiffness is elucidated using finite-element modeling combined with experiments - adhesion to stiffer surfaces results in greater changes in mechanical stress and strain in the bacterial envelope than does adhesion to softer surfaces with identical surface chemistry. The cell-surface-exposed protein PilY1 acts as a mechanosensor, that upon surface engagement, results in higher cyclic-di-GMP levels, lower motility, and greater accumulation on stiffer surfaces. PilY1 impacts the biofilm lag phase, which is extended for bacteria attaching to stiffer surfaces. This study shows clear evidence that bacteria actively respond to different stiffness of surfaces where they adhere via perceiving varied mechanical stress and strain upon surface engagement.

9.
Appl Environ Microbiol ; 89(3): e0171622, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36847540

RESUMO

Currently, there is a lack of bacterial biomarkers indicative of exposure to ionizing radiation (IR). IR biomarkers have applications for medical treatment planning, population exposure surveillance, and IR sensitivity studies. In this study, we compared the utility of signals originating from prophages and the SOS regulon as biomarkers of IR exposure in the radiosensitive bacterium Shewanella oneidensis. Using RNA sequencing, we demonstrated that 60 min after exposure to acute doses of IR (40, 1, 0.5, and 0.25 Gy), the transcriptional activation of the SOS regulon and the lytic cycle of the T-even lysogenic prophage So Lambda are comparable. Using quantitative PCR (qPCR), we showed that 300 min after exposure to doses as low as 0.25 Gy, the fold change of transcriptional activation of the So Lambda lytic cycle surpassed that of the SOS regulon. We observed an increase in cell size (a phenotype of SOS activation) and plaque production (a phenotype of prophage maturation) 300 min after doses as low as 1 Gy. While the transcriptional responses of the SOS and So Lambda regulons have been examined in S. oneidensis after lethal IR exposures, the potential of these (and other transcriptome-wide) responses as biomarkers of sublethal levels of IR (<10 Gy) and the longer-term activity of these two regulons have not been investigated. A major finding is that after exposure to sublethal doses of IR, the most upregulated transcripts are associated with a prophage regulon and not with a DNA damage response. Our findings suggest that prophage lytic cycle genes are a promising source of biomarkers of sublethal DNA damage. IMPORTANCE The bacterial minimum threshold of sensitivity to ionizing radiation (IR) is poorly understood, which hinders our understanding of how living systems recover from the doses of IR experienced in medical, industrial, and off-world environments. Using a transcriptome-wide approach, we studied how in the highly radiosensitive bacterium S. oneidensis, genes (including the SOS regulon and the So Lambda prophage) are activated after exposure to low doses of IR. We found that 300 min after exposure to doses as low as 0.25 Gy, genes within the So Lambda regulon remained upregulated. As this is the first transcriptome-wide study of how bacteria respond to acute sublethal doses of IR, these findings serve as a benchmark for future bacterial IR sensitivity studies. This is the first work to highlight the utility of prophages as biomarkers of exposure to very low (i.e., sublethal) doses of IR and to examine the longer-term impacts of sublethal IR exposure on bacteria.


Assuntos
Prófagos , Shewanella , Prófagos/genética , Radiação Ionizante , Lisogenia , Shewanella/genética , Biomarcadores
10.
NPJ Biofilms Microbiomes ; 8(1): 49, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705574

RESUMO

A new technique was used to measure the viscoelasticity of in vivo Pseudomonas aeruginosa biofilms. This was done through ex vivo microrheology measurements of in vivo biofilms excised from mouse wound beds. To our knowledge, this is the first time that the mechanics of in vivo biofilms have been measured. In vivo results are then compared to typical in vitro measurements. Biofilms grown in vivo are more relatively elastic than those grown in a wound-like medium in vitro but exhibited similar compliance. Using various genetically mutated P. aeruginosa strains, it is observed that the contributions of the exopolysaccharides Pel, Psl, and alginate to biofilm viscoelasticity were different for the biofilms grown in vitro and in vivo. In vitro experiments with collagen containing medium suggest this likely arises from the incorporation of host material, most notably collagen, into the matrix of the biofilm when it is grown in vivo. Taken together with earlier studies that examined the in vitro effects of collagen on mechanical properties, we conclude that collagen may, in some cases, be the dominant contributor to biofilm viscoelasticity in vivo.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Animais , Colágeno/metabolismo , Colágeno/farmacologia , Camundongos , Polissacarídeos Bacterianos/metabolismo , Pseudomonas aeruginosa/fisiologia , Substâncias Viscoelásticas , Ferimentos e Lesões/microbiologia
11.
Front Cell Infect Microbiol ; 12: 835754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463635

RESUMO

Biofilms are the cause of most chronic bacterial infections. Living within the biofilm matrix, which is made of extracellular substances, including polysaccharides, proteins, eDNA, lipids and other molecules, provides microorganisms protection from antimicrobials and the host immune response. Exopolysaccharides are major structural components of bacterial biofilms and are thought to be vital to numerous aspects of biofilm formation and persistence, including adherence to surfaces, coherence with other biofilm-associated cells, mechanical stability, protection against desiccation, binding of enzymes, and nutrient acquisition and storage, as well as protection against antimicrobials, host immune cells and molecules, and environmental stressors. However, the contribution of specific exopolysaccharide types to the pathogenesis of biofilm infection is not well understood. In this study we examined whether the absence of the two main exopolysaccharides produced by the biofilm former Pseudomonas aeruginosa would affect wound infection in a mouse model. Using P. aeruginosa mutants that do not produce the exopolysaccharides Pel and/or Psl we observed that the severity of wound infections was not grossly affected; both the bacterial load in the wounds and the wound closure rates were unchanged. However, the size and spatial distribution of biofilm aggregates in the wound tissue were significantly different when Pel and Psl were not produced, and the ability of the mutants to survive antibiotic treatment was also impaired. Taken together, our data suggest that while the production of Pel and Psl do not appear to affect P. aeruginosa pathogenesis in mouse wound infections, they may have an important implication for bacterial persistence in vivo.


Assuntos
Infecções por Pseudomonas , Infecção dos Ferimentos , Animais , Proteínas de Bactérias/genética , Biofilmes , Camundongos , Polissacarídeos Bacterianos/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética
12.
Biophys Rev (Melville) ; 2(3): 031402, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34632456

RESUMO

Phagocytic immune cells can clear pathogens from the body by engulfing them. Bacterial biofilms are communities of bacteria that are bound together in a matrix that gives biofilms viscoelastic mechanical properties that do not exist for free-swimming bacteria. Since a neutrophil is too small to engulf an entire biofilm, it must be able to detach and engulf a few bacteria at a time if it is to use phagocytosis to clear the infection. We recently found a negative correlation between the target elasticity and phagocytic success. That earlier work used time-consuming, manual analysis of micrographs of neutrophils and fluorescent beads. Here, we introduce and validate flow cytometry as a fast and high-throughput technique that increases the number of neutrophils analyzed per experiment by two orders of magnitude, while also reducing the time required to do so from hours to minutes. We also introduce the use of polyacrylamide gels in our assay for engulfment success. The tunability of polyacrylamide gels expands the mechanical parameter space we can study, and we find that high toughness and yield strain, even with low elasticity, also impact the phagocytic success as well as the timescale thereof. For stiff gels with low-yield strain, and consequent low toughness, phagocytic success is nearly four times greater when neutrophils are incubated with gels for 6 h than after only 1 h of incubation. In contrast, for soft gels with high-yield strain and consequent high toughness, successful engulfment is much less time-sensitive, increasing by less than a factor of two from 1 to 6 h incubation.

13.
Soft Matter ; 17(25): 6225-6237, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34109345

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes thousands of deaths every year in part due to its ability to form biofilms composed of bacteria embedded in a matrix of self-secreted extracellular polysaccharides (EPS), e-DNA, and proteins. In chronic wounds, biofilms are exposed to the host extracellular matrix, of which collagen is a major component. How bacterial EPS interacts with host collagen and whether this interaction affects biofilm viscoelasticity is not well understood. Since physical disruption of biofilms is often used in their removal, knowledge of collagen's effects on biofilm viscoelasticity may enable new treatment strategies that are better tuned to biofilms growing in host environments. In this work, biofilms are grown in the presence of different concentrations of collagen that mimic in vivo conditions. In order to explore collagen's interaction with EPS, nine strains of P. aeruginosa with different patterns of EPS production were used to grow biofilms. Particle tracking microrheology was used to characterize the mechanical development of biofilms over two days. Collagen is found to decrease biofilm compliance and increase relative elasticity regardless of the EPS present in the system. However, this effect is minimized when biofilms overproduce EPS. Collagen appears to become a de facto component of the EPS, through binding to bacteria or physical entanglement.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Colágeno , Polissacarídeos Bacterianos , Viscosidade
14.
R Soc Open Sci ; 8(1): 201453, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33614081

RESUMO

The growth of bacterial biofilms on implanted medical devices causes harmful infections and device failure. Biofilm development initiates when bacteria attach to and sense a surface. For the common nosocomial pathogen Pseudomonas aeruginosa and many others, the transition to the biofilm phenotype is controlled by the intracellular signal and second messenger cyclic-di-GMP (c-di-GMP). It is not known how biomedical materials might be adjusted to impede c-di-GMP signalling, and there are few extant methods for conducting such studies. Here, we develop such a method. We allowed P. aeruginosa to attach to the surfaces of poly(ethylene glycol) diacrylate (PEGDA) hydrogels. These bacteria contained a plasmid for a green fluorescent protein (GFP) reporter for c-di-GMP. We used laser-scanning confocal microscopy to measure the dynamics of the GFP reporter for 3 h, beginning 1 h after introducing bacteria to the hydrogel. We controlled for the effects of changes in bacterial metabolism using a promoterless plasmid for GFP, and for the effects of light passing through different hydrogels being differently attenuated by using fluorescent plastic beads as 'standard candles' for calibration. We demonstrate that this method can measure statistically significant differences in c-di-GMP signalling associated with different PEGDA gel types and with the surface-exposed protein PilY1.

15.
PLoS One ; 15(7): e0236599, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32722685

RESUMO

The increasing prevalence of carbon nanotubes (CNTs) as components of new functional materials has the unintended consequence of causing increases in CNT concentrations in aqueous environments. Aqueous systems are reservoirs for bacteria, including human and animal pathogens, that can form biofilms. At high concentrations, CNTs have been shown to display biocidal effects; however, at low concentrations, the interaction between CNTs and bacteria is more complicated, and antimicrobial action is highly dependent upon the properties of the CNTs in suspension. Here, impact of low concentrations of multiwalled CNTs (MWCNTs) on the biofilm-forming opportunistic human pathogen Pseudomonas aeruginosa is studied. Using phase contrast and confocal microscopy, flow cytometry, and antibiotic tolerance assays, it is found that sub-lethal concentrations (2 mg/L) of MWCNTs promote aggregation of P. aeruginosa into multicellular clusters. However, the antibiotic tolerance of these "young" bacterial-CNT aggregates is similar to that of CNT-free cultures. Overall, our results indicate that the co-occurrence of MWCNTs and P. aeruginosa in aqueous systems, which promotes the increased number and size of bacterial aggregates, could increase the dose to which humans or animals are exposed.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanotubos de Carbono/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Suspensões
16.
Langmuir ; 36(6): 1585-1595, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31990563

RESUMO

Biofilms are communities of bacteria embedded in a polymeric matrix which are found in infections and in environments outside the body. Breaking down the matrix renders biofilms more susceptible to physical disruption and to treatments such as antibiotics. Different species of bacteria, and different strains within the same species, produce different types of matrix polymers. This suggests that targeting specific polymers for disruption may be more effective than nonspecific approaches to disrupting biofilm matrixes. In this study, we treated Pseudomonas aeruginosa biofilms with enzymes that are specific to different matrix polymers. We measured the resulting alteration in biofilm mechanics using bulk rheology and changes in structure using electron microscopy. We find that, for biofilms grown in vitro, the effect of enzymatic treatment is greatest when the enzyme is specific to a dominant matrix polymer. Specifically matched enzymatic treatment tends to reduce yield strain and yield stress and increase the rate of biofilm drying, due to increased diffusivity as a result of network compromise. Electron micrographs qualitatively suggest that well-matched enzymatic treatments reduce long-range structure and shorten connecting network fibers. Previous work has shown that generic glycoside hydrolases can cause dispersal of bacteria from in vivo and ex vivo biofilms into a free-swimming state, and thereby make antibiotic treatment more effective. For biofilms grown in wounded mice, we find that well-matched treatments that result in the greatest mechanical compromise in vitro induce the least dispersal ex vivo. Moreover, we find that generic glycoside hydrolases have no measurable effect on the mechanics of biofilms grown in vitro, while previous work has shown them to be highly effective at inducing dispersal in vivo and ex vivo. This highlights the possibility that effective approaches to eradicating biofilms may depend strongly on the growth environment.


Assuntos
Polímeros , Pseudomonas aeruginosa , Animais , Antibacterianos/farmacologia , Biofilmes , Camundongos
17.
Annu Rev Biophys ; 49: 19-39, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31913664

RESUMO

Many critical biological events, including biochemical signaling, membrane traffic, and cell motility, originate at membrane surfaces. Each such event requires that members of a specific group of proteins and lipids rapidly assemble together at a specific site on the membrane surface. Understanding the biophysical mechanisms that stabilize these assemblies is critical to decoding and controlling cellular functions. In this article, we review progress toward a quantitative biophysical understanding of the mechanisms that drive membrane heterogeneity and organization. We begin from a physical perspective, reviewing the fundamental principles and key experimental evidence behind each proposed mechanism. We then shift to a biological perspective, presenting key examples of the role of heterogeneity in biology and asking which physical mechanisms may be responsible. We close with an applied perspective, noting that membrane heterogeneity provides a novel therapeutic target that is being exploited by a growing number of studies at the interface of biology, physics, and engineering.


Assuntos
Membrana Celular/metabolismo , Fenômenos Biofísicos , Humanos , Transdução de Sinais
18.
Biophys J ; 117(8): 1496-1507, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31586520

RESUMO

Biofilm infections can consist of bacterial aggregates that are an order of magnitude larger than neutrophils, phagocytic immune cells that densely surround aggregates but do not enter them. Because a neutrophil is too small to engulf the entire aggregate, it must be able to detach and engulf a few bacteria at a time if it is to use phagocytosis to clear the infection. Current research techniques do not provide a method for determining how the success of phagocytosis, here defined as the complete engulfment of a piece of foreign material, depends on the mechanical properties of a larger object from which the piece must be removed before being engulfed. This article presents a step toward such a method. By varying polymer concentration or cross-linking density, the elastic moduli of centimeter-sized gels are varied over the range that was previously measured for Pseudomonas aeruginosa biofilms grown from clinical bacterial isolates. Human neutrophils are isolated from blood freshly drawn from healthy adult volunteers, exposed to gel containing embedded beads for 1 h, and removed from the gel. The percentage of collected neutrophils that contain beads that had previously been within the gels is used to measure successful phagocytic engulfment. Both increased polymer concentration in agarose gels and increased cross-linking density in alginate gels are associated with a decreased success of phagocytic engulfment. Upon plotting the percentage of neutrophils showing successful engulfment as a function of the elastic modulus of the gel to which they were applied, it is found that data from both alginate and agarose gels collapse onto the same curve. This suggests that gel mechanics may be impacting the success of phagocytosis and demonstrates that this experiment is a step toward realizing methods for measuring how the mechanics of a large target, or a large structure in which smaller targets are embedded, impact the success of phagocytic engulfment.


Assuntos
Biofilmes , Módulo de Elasticidade , Fagocitose , Adulto , Alginatos/química , Células Cultivadas , Humanos , Hidrogéis/química , Neutrófilos/imunologia , Neutrófilos/microbiologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Sefarose/química , Viscosidade
19.
J Cell Sci ; 132(7)2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944157

RESUMO

Whether bacteria are in the planktonic state, free-swimming or free-floating in liquid, or in the biofilm state, sessile on surfaces, they are always subject to mechanical forces. The long, successful evolutionary history of bacteria implies that they are capable of adapting to varied mechanical forces, and probably even actively respond to mechanical cues in their changing environments. However, the sensing of mechanical cues by bacteria, or bacterial mechanosensing, has been under-investigated. This leaves the mechanisms underlying how bacteria perceive and respond to mechanical cues largely unknown. In this Review, we first examine the surface-associated behavior of bacteria, outline the clear evidence for bacterial mechanosensing and summarize the role of flagella, type-IV pili, and envelope proteins as potential mechanosensors, before presenting indirect evidence for mechanosensing in bacteria. The general themes underlying bacterial mechanosensing that we highlight here may provide a framework for future research.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes , Mecanotransdução Celular , Pseudomonas aeruginosa/fisiologia , Fímbrias Bacterianas/fisiologia , Flagelos/fisiologia , Estresse Fisiológico
20.
Phys Biol ; 16(4): 041001, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30913545

RESUMO

Biofilms are communities of sessile microbes that are bound to each other by a matrix made of biopolymers and proteins. Spatial structure is present in biofilms on many lengthscales. These range from the nanometer scale of molecular motifs to the hundred-micron scale of multicellular aggregates. Spatial structure is a physical property that impacts the biology of biofilms in many ways. The molecular structure of matrix components controls their interaction with each other (thereby impacting biofilm mechanics) and with diffusing molecules such as antibiotics and immune factors (thereby impacting antibiotic tolerance and evasion of the immune system). The size and structure of multicellular aggregates, combined with microbial consumption of growth substrate, give rise to differentiated microenvironments with different patterns of metabolism and gene expression. Spatial association of more than one species can benefit one or both species, while distances between species can both determine and result from the transport of diffusible factors between species. Thus, a widespread theme in the biological importance of spatial structure in biofilms is the effect of structure on transport. We survey what is known about this and other effects of spatial structure in biofilms, from molecules up to multispecies ecosystems. We conclude with an overview of what experimental approaches have been developed to control spatial structure in biofilms and how these and other experiments can be complemented with computational work.


Assuntos
Antibacterianos/química , Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Ecossistema , Polímeros/química , Proteínas/química , Transporte Biológico , Comunicação Celular/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Biologia Computacional/métodos , Estrutura Molecular , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA