RESUMO
Neonicotinoid insecticide seed treatments are commonly used in rice (Oryza sativa) production to control rice water weevil (Lisorhoptrus oryzophilus). With the use of neonicotinoid seed treatments, there is potential that honey bees (Apis mellifera) could be exposed to neonicotinoids through translocation to the pollen. Studies were conducted in 2015 and 2016 to determine the level of neonicotinoids present in flag leaves, pollen, and grain of rice. Thiamethoxam was applied as a seed treatment and foliar prior to flooding. Clothianidin was applied as a seed treatment and as a foliar at a preflood and postflood timing. Subsamples of flag leaves, pollen, and grain were analyzed for positive neonicotinoid detections and abundance. Thiamethoxam was detected in 8.9% of samples and clothianidin was detected in 1.4% of samples. For both thiamethoxam and clothianidin, more positive samples were observed in flag leaf samples than in pollen or grain. An average of 4.30 ng/g of thiamethoxam was detected in flag leaves from seed-applied thiamethoxam. An average of 1.25 ng/g of clothianidin was found in flag leaves from a preflood application of clothianidin. A survey of honey bees present in rice fields was conducted in Mississippi and Arkansas to determine the abundance of honey bees present in rice fields based on the time of day. Honey bee densities were low in rice, with less than 5% and 3% positive detections observed in Mississippi and Arkansas, respectively. More positive detections and higher densities of honey bees were observed for mid-day sampling than for morning or evening sampling.
Assuntos
Guanidinas , Inseticidas , Neonicotinoides , Oryza , Tiametoxam , Tiazóis , Animais , Abelhas/efeitos dos fármacos , Inseticidas/análise , Neonicotinoides/análise , Guanidinas/análise , Guanidinas/toxicidade , Tiametoxam/análise , Tiazóis/análise , Sementes , Pólen , Folhas de Planta/químicaRESUMO
Transgenic corn and cotton that produce Cry and Vip3Aa toxins derived from Bacillus thuringiensis (Bt) are widely planted in the United States to control lepidopteran pests. The sustainability of these Bt crops is threatened because the corn earworm/bollworm, Helicoverpa zea (Boddie), is evolving a resistance to these toxins. Using Bt sweet corn as a sentinel plant to monitor the evolution of resistance, collaborators established 146 trials in twenty-five states and five Canadian provinces during 2020-2022. The study evaluated overall changes in the phenotypic frequency of resistance (the ratio of larval densities in Bt ears relative to densities in non-Bt ears) in H. zea populations and the range of resistance allele frequencies for Cry1Ab and Vip3Aa. The results revealed a widespread resistance to Cry1Ab, Cry2Ab2, and Cry1A.105 Cry toxins, with higher numbers of larvae surviving in Bt ears than in non-Bt ears at many trial locations. Depending on assumptions about the inheritance of resistance, allele frequencies for Cry1Ab ranged from 0.465 (dominant resistance) to 0.995 (recessive resistance). Although Vip3Aa provided high control efficacy against H. zea, the results show a notable increase in ear damage and a number of surviving older larvae, particularly at southern locations. Assuming recessive resistance, the estimated resistance allele frequencies for Vip3Aa ranged from 0.115 in the Gulf states to 0.032 at more northern locations. These findings indicate that better resistance management practices are urgently needed to sustain efficacy the of corn and cotton that produce Vip3Aa.
RESUMO
Cotton leafroll dwarf virus (CLRDV) is an emerging aphid-borne pathogen infecting cotton, Gossypium hirsutum L., in the southern United States (U.S.). The cotton aphid, Aphis gossypii Glover, infests cotton annually and is the only known vector to transmit CLRDV to cotton. Seven other species have been reported to feed on, but not often infest, cotton: Protaphis middletonii Thomas, Aphis craccivora Koch, Aphis fabae Scopoli, Macrosiphum euphorbiae Thomas, Myzus persicae Sulzer, Rhopalosiphum rufiabdominale Sasaki, and Smynthurodes betae Westwood. These seven have not been studied in cotton, but due to their potential epidemiological importance, an understanding of the intra- and inter-annual variations of these species is needed. In 2020 and 2021, aphids were monitored from North Carolina to Texas using pan traps around cotton fields. All of the species known to infest cotton, excluding A. fabae, were detected in this study. Protaphis middletonii and A. gossypii were the most abundant species identified. The five other species of aphids captured were consistently low throughout the study and, with the exception of R. rufiabdominale, were not detected at all locations. The abundance, distribution, and seasonal dynamics of cotton-infesting aphids across the southern U.S. are discussed.
RESUMO
Studies were conducted in 2020 and 2021 at the Delta Research and Extension Center in Stoneville, MS, to determine the residual concentrations of chlorantraniliprole in cotton (Gossypium hirsutum, L.) leaves, as well as the concentrations in petals and anthers that developed after the time of application. Foliar applications of chlorantraniliprole were applied at four rates for leaves and two rates for petals and anthers at the second week of bloom. Additional bioassays were conducted to determine mortality of corn earworm (Helicoverpa zea, Boddie) in anthers. For the leaf study, plants were partitioned into three zones consisting of top, middle, and bottom zones. Leaf samples from each zone were analyzed for chemical concentrations at 1, 7, 14, 21, and 28 days after treatment (DAT). Residual concentrations, although variable, persisted through all sampling dates, rates, and zones tested. In this study, chlorantraniliprole remained detectable up to 28 DAT. Results from the cotton flower petal and anther studies detected concentrations of chlorantraniliprole in petals at 4, 7, 10, and 14 DAT, but no concentrations were detected in anthers. Therefore, no mortality of corn earworm was recorded in the anther bioassays. A series of diet-incorporated bioassays were conducted using concentrations previously found in the petal study to determine baseline susceptibilities of corn earworms and predicted mortality. Results from the diet-incorporated bioassays showed similar susceptibility in field and lab colony corn earworms. Concentrations of chlorantraniliprole could provide up to 64% control of corn earworm when feeding occurs on the petals.
RESUMO
Foliar-applied insecticide treatments may be necessary to manage thrips in cotton (Gossypium hirsutum L.) under severe infestations or when at-planting insecticide seed treatments do not provide satisfactory protection. The most common foliar-applied insecticide is acephate. Field observations in Tennessee suggest that the performance of acephate has declined. Thus, the first objective was to perform leaf-dip bioassays to assess if tobacco thrips, Frankliniella fusca (Hinds) (Thysanoptera: Thripidae), in cotton production regions have evolved resistance to foliar-applied insecticides. A second objective was to assess the performance of commonly applied foliar insecticides for managing thrips in standardized field trials in Arkansas, Tennessee, Mississippi, and Texas. For both objectives, several insecticides were evaluated including acephate, dicrotophos, dimethoate, lambda-cyhalothrin, imidacloprid, and spinetoram. Field trials and bioassays were completed from 2018 to 2021. Dose-response bioassays with acephate were performed on tobacco thrips field populations and a susceptible laboratory population. Bioassay results suggest that tobacco thrips have developed resistance to acephate and other organophosphate insecticides; however, this resistance seems to be most severe in Arkansas, Tennessee, and the Delta region of Mississippi. Resistance to other classes of insecticides were perhaps even more evident in these bioassays. The performance of these insecticides in field trials was variable, with tobacco thrips only showing consistent signs of resistance to lambda-cyhalothrin. However, it is evident that many populations of tobacco thrips are resistant to multiple classes of insecticides. Further research is needed to determine heritability and resistance mechanism(s).
Assuntos
Inseticidas , Tisanópteros , Animais , Bioensaio , Dimetoato , Gossypium , Inseticidas/farmacologia , Nitrilas , Compostos Organotiofosforados , Fosforamidas , Piretrinas , Nicotiana , Estados UnidosRESUMO
BACKGROUND: Crops genetically engineered to make insect-killing proteins from Bacillus thuringiensis (Bt) have revolutionized management of some pests. However, the benefits of such transgenic crops are reduced when pests evolve resistance to Bt toxins. We evaluated resistance to Bt toxins and Bt cotton plants using laboratory bioassays and complementary field trials focusing on Helicoverpa zea, one of the most economically important pests of cotton and other crops in the United States. RESULTS: The data from 235 laboratory bioassays demonstrate resistance to Cry1Ac, Cry1Fa, and Cry2Ab occurred in most of the 95 strains of H. zea derived from Arkansas, Louisiana, Mississippi, Tennessee, and Texas during 2016 to 2021. Complementary field data show efficacy decreased for Bt cotton producing Cry1Ac + Cry1Fa or Cry1Ac + Cry2Ab, but not Cry1Ac + Cry1Fa + Vip3Aa. Moreover, analysis of data paired by field site and year shows higher survival in bioassays was generally associated with lower efficacy of Bt cotton. CONCLUSIONS: The results confirm and extend previous evidence showing widespread practical resistance of H. zea in the United States to the Cry toxins produced by Bt cotton and corn, but not to Vip3Aa. Despite deployment in combination with Cry toxins in Bt crops, Vip3Aa effectively acts as a single toxin against H. zea larvae that are highly resistant to Cry toxins. Furthermore, Vip3Aa adoption is increasing and previous work provided an early warning of field-evolved resistance. Thus, rigorous resistance management measures are needed to preserve the efficacy of Vip3Aa against this highly adaptable pest. © 2022 Society of Chemical Industry.
Assuntos
Bacillus thuringiensis , Mariposas , Animais , Estados Unidos , Toxinas de Bacillus thuringiensis , Bacillus thuringiensis/genética , Zea mays/metabolismo , Gossypium/metabolismo , Resistência a Inseticidas , Proteínas de Bactérias/farmacologia , Proteínas Hemolisinas/farmacologia , Endotoxinas/farmacologia , Produtos Agrícolas/metabolismo , Plantas Geneticamente Modificadas/metabolismoRESUMO
The tarnished plant bug (Lygus lineolaris Palisot de Beauvois) is the dominant insect pest of cotton (Gossypium hirsutum L.) in the Mid-South Cotton Belt. This is partly due to the fact that this pest has developed resistance to most insecticides used for control. Laboratory experiments were conducted during 2014 and 2015 to study the behavioral response of tarnished plant bug nymphs to several classes of insecticides. Twenty third-instar nymphs were placed in individual dishes divided into four quadrants with five green bean pieces in each quadrant (10 treated and 10 untreated green beans in each dish). Dishes were checked at 1, 4, 8, and 24 h. Tarnished plant bug nymphs appeared to avoid green beans treated with IGR, pyrethroid, organophosphate, or carbamate insecticides, while there appeared to be an attraction to green bean pieces treated with sulfoxamine and pyridine carboxamide insecticides. No relationship was observed with neonicotinoid insecticides within 24 h.
RESUMO
Widespread field-evolved resistance of bollworm [Helicoverpa zea (Boddie)] to Cry1 and Cry2 Bt proteins has threatened the utility of Bt cotton for managing bollworm. Consequently, foliar insecticide applications have been widely adopted to provide necessary additional control. Field experiments were conducted across the Mid-South and in Texas to devise economic thresholds for foliar insecticide applications targeting bollworm in cotton. Bt cotton technologies including TwinLink (TL; Cry1Ab+Cry2Ae), TwinLink Plus (TLP; Cry1Ab+Cry2Ae+Vip3Aa), Bollgard II (BG2; Cry1Ac+Cry2Ab), Bollgard 3 (BG3; Cry1Ac+Cry2Ab+Vip3Aa), WideStrike (WS; Cry1Ac+Cry1F), WideStrike 3 (WS3; Cry1Ac+Cry1F+Vip3Aa), and a non-Bt (NBT) variety were evaluated. Gain threshold, economic injury level, and economic thresholds were determined. A 6% fruiting form injury threshold was selected and compared with preventive treatments utilizing chlorantraniliprole. Additionally, the differences in yield from spraying bollworms was compared among Bt cotton technologies. The 6% fruiting form injury threshold resulted in a 25 and 75% reduction in insecticide applications relative to preventive sprays for WS and BG2, respectively. All Bt technologies tested in the current study exhibited a positive increase in yield from insecticide application. The frequency of yield increase from spraying WS was comparable to that of NBT. Significant yield increases due to insecticide application occurred less frequently in triple-gene Bt cotton. However, their frequencies were close to the dual-gene Bt cotton, except for WS. The results of our study suggest that 6% fruiting form injury is a viable threshold, and incorporating a vetted economic threshold into an Integrated Pest Management program targeting bollworm should improve the sustainability of cotton production.
Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Endotoxinas , Gossypium , Proteínas Hemolisinas , Resistência a Inseticidas , Mariposas/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genéticaRESUMO
The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), (Hemiptera: Miridae) is considered the most damaging pest of cotton (Gossypium hirsutum L.) in the mid-southern United States, although it is established throughout the United States, southern Canada, and northern Mexico. The introduction of transgenic crops for the control of moths in the Heliothine complex and eradication of the boll weevil, Anthonomus grandis, from much of the United States led to greatly reduced pesticide use in cotton fields, which allowed L. lineolaris to emerge as a new primary pest of cotton in the mid-southern United States. Since the publication of a review by Layton (2000) on damage caused by Lygus lineolaris, many new studies have been published on the changes in host range, population dynamics, sampling methods and thresholds, cultural practices, sex pheromones and attractant blends, novel pesticides and insecticide resistance mechanisms, olfactory and feeding behaviors, introduction of biological control agents, host-plant resistance mechanisms, and new molecular and genetic tools for integrated pest management of Lygus species in cotton and other important crops. Here, we review and discuss the latest developments in L. lineolaris research in the last two decades.
RESUMO
Brown stink bug, Euschistus servus (Say) (Hemiptera: Pentatomidae), is a common insect that can infest corn fields in the Mid-South and Southeastern U.S. Infestations and damage are sporadic, thus little research has been conducted on the impact of brown stink bug infesting corn seedlings. Two experiments were conducted in eleven commercial corn fields in the Mississippi Delta to evaluate the impact of damage from natural stink bug infestations during the seedling stage (Assuntos
Heterópteros
, Zea mays
, Animais
, Mississippi
, Plântula
, Sudeste dos Estados Unidos
RESUMO
Soybean, Glycine max (L.) Merr., is planted during 3.5-4 mo across the Mid-South United States. Currently, no information exists regarding the effects of planting date on soybean yield loss from early season defoliation. In 2015 and 2016, to evaluate the effects of planting date on yield loss from defoliation, soybean were planted in field plots 2 wk apart from early April to mid-June, for a total of six planting dates. Each planting date included a nondefoliated control and a 100% defoliation treatment where leaves were manually excised at the V4 growth stage. Mean yield loss from defoliation varied across planting dates, with mid-April plantings having the least amount yield reduction, 573 kg/ha, and early-June plantings having the greatest yield reduction, 904 kg/ha. Percent yield reduction from defoliation increased as planting was delayed, suggesting that defoliation thresholds might need adjustment based on planting date and yield potential. However, more research is needed at lower levels of defoliation to accurately delineate such thresholds.
Assuntos
Glycine max , Folhas de Planta , Animais , Estações do AnoRESUMO
Plant densities in Mid-South U.S. soybean, Glycine max (L.) Merr., fields can vary greatly due to a wide range of factors, although soybean yields are generally insensitive to variations in density. Currently, it is unknown if yield loss from insect-related defoliation varies across different soybean stand densities. Soybean was planted in Starkville and Stoneville, MS, in 2016 and 2017 at five seeding rates ranging from 123,500 to 420,070 seed/ha in 74,130 seed/ha increments. Each seeding rate contained a nondefoliated plot and a plot that was defoliated 67% at the R1 growth stage. Defoliated plants had a greater leaf expansion rate from R1 to R3 than nondefoliated plants. Defoliation reduced yield where plant densities were <192,800 plants/ha, but greater densities were not affected. Reduced yield in defoliated plots when compared with nondefoliated plots at equivalent R3 leaf area index values indicated that some resources were used to replace the removed leaf area instead of seed production. These results suggest that fields with substandard plant densities might benefit from a reduced treatment threshold for defoliating pests.
Assuntos
Glycine max , Folhas de Planta , Animais , Insetos , SementesRESUMO
BACKGROUND: The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), has emerged as a major pest of cotton, Gossypium hirsutum L, in the mid-southern USA. In the early 1990s L. lineolaris populations developed resistance to several classes of conventional insecticides, increasing the need for insecticides with alternative modes of action such as insect growth regulators (IGRs) for integrated pest management (IPM). The benzoylphenyl urea (BPU) class of IGRs acts by disrupting the growth and development of immature stages of insects, but little is known about its impact on adult stages. RESULTS: The effect of novaluron (Diamond™ 0.83EC), a BPU with known chitin synthesis inhibitor activity, was investigated on adult females of L. lineolaris. Treatment of 1-day-old adults with 600 ppm of novaluron in the diet prevented oviposition, while treatment of older females had no impact on oviposition. Oral novaluron exposure of adults of all ages reduced the viability of eggs laid. Novaluron treatment caused ultrastructural changes in the ovaries of 1-day-old adults (48 h post exposure), distorting the follicular epithelial cell architecture of developing oocytes. Additionally, novaluron treatment decreased the chitin content in ovarian tissue. CONCLUSION: Our results suggest that chitin or chitin-like components in the developing ovaries of adult L. lineolaris are a target of IGRs such as novaluron, but its activity is specific to a critical time during development. This enhances our understanding of the effects of BPUs on adult insects and could lead to incorporation of IGRs in IPM for controlling adult insect pest populations in the field. © 2020 Society of Chemical Industry.
Assuntos
Heterópteros , Inseticidas , Animais , Feminino , Inseticidas/farmacologia , Ninfa , Oogênese , Oviposição , Compostos de FenilureiaRESUMO
The rice stink bug, Oebalus pugnax (F.), is a key pest of heading rice, Oryza sativa L. (Poales: Poaceae), in the southern United States. Sweep net sampling is the recommended method for sampling rice stink bug in rice, but there currently exists no specific recommendation for sweep length, and a large amount of variation likely exists amongst samplers. The objectives of this study were to determine the role that sweep length plays in sampling accuracy and determine the feasibility of using sweep lengths smaller than 180°. When monitoring sweep lengths by consultants, producers, and researchers, a large amount of variation in sweep length and a significant linear relationship between sweep length and rice stink bug catch per 10 sweeps was observed. Sweep length was then controlled at three levels (0.8, 1.8, and 3.5 m) and a change from 0.8 to 1.8 m in sweep length led to an increase on average of 2.28 rice stink bugs per 10 sweeps. These data suggest knowledge of sweep length is vital, and paired with large amounts of observed variation in sweep length, recommending a specific sweep length is ideal. Using Taylor's values, it was determined that 1.8 m sweeps resulted in density estimates that were as reliable as 3.5 m (180°) sweeps, suggesting a longer sweep length was not necessary. A 1.8 m sweep length recommendation would create an easier sampling regimen that is still reliable, which could lead to more accurate action threshold decisions being made for rice stink bug if it increases adoption in consultants and producers.
Assuntos
Heterópteros , Oryza , Animais , Ninfa , Densidade Demográfica , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Plant bugs (Lygus spp.) and thrips (Thrips spp.) are two of the most economically important insect pest groups impacting cotton production in the USA today, but are not controlled by current transgenic cotton varieties. Thus, seed or foliar-applied chemical insecticides are typically required to protect cotton from these pest groups. Currently, these pests are resistant to several insecticides, resulting in fewer options for economically viable management. Previous publications documented the efficacy of transgenic cotton event MON 88702 against plant bugs and thrips in limited laboratory and field studies. Here, we report results from multi-location and multi-year field studies demonstrating efficacy provided by MON 88702 against various levels of these pests. RESULTS: MON 88702 provided a significant reduction in numbers of Lygus nymphs and subsequent yield advantage. MON 88702 also had fewer thrips and minimal injury. The level of control demonstrated by this transgenic trait was significantly better compared with its non-transgenic near-isoline, DP393, receiving insecticides at current commercial rates. CONCLUSION: The level of efficacy demonstrated here suggests that MON 88702, when incorporated into existing IPM programs, could become a valuable additional tool for management of Lygus and thrips in cotton agroecosystems experiencing challenges of resistance to existing chemical control strategies. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Gossypium/genética , Gossypium/parasitologia , Heterópteros/fisiologia , Tisanópteros/fisiologia , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endotoxinas/química , Endotoxinas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Ninfa , Controle Biológico de Vetores/métodos , Plantas Geneticamente ModificadasRESUMO
The use of foliar insecticide sprays at low temperatures may result in decreased efficacy in grain sorghum, Sorghum bicolor L. Moench, for control of sugarcane aphid, Melanaphis sacchari (Zehntner). Sulfoxaflor and flupyradifurone were evaluated to determine the impact of temperature on their efficacy against sugarcane aphid in grain sorghum. Sorghum was treated at the soft dough growth stage with sulfoxaflor and flupyradifurone, as well as an untreated check. Leaf discs were pulled at various intervals from 0 to 10 d after treatment, placed in water agar plates, infested with aphids, placed in growth chambers at 15.5°C or 29.4°C, and evaluated 48 h after each interval. In 2015, both insecticides resulted in similar levels of sugarcane aphid mortality and efficacy decreased at a similar rate at 15.5°C. At 29.0°C, flupyradifurone resulted in greater mortality of sugarcane aphid than sulfoxaflor as length of time after treatment increased, suggesting that it provides longer residual control than sulfoxaflor. In 2016, both insecticides provided poor control of sugarcane aphid at 15.5°C for all time intervals. At 29.0°C, flupyradifurone provided overall better control than sulfoxaflor. These data suggest that lower temperatures can reduce the efficacy of both sulfoxaflor and flupyradifurone. In addition, flupyradifurone appeared to provide longer residual control and overall better control of sugarcane aphid than sulfoxaflor. If lower temperatures occur when sugarcane aphid populations exceed current thresholds, weather forecast should be considered in pest management decision-making process.
Assuntos
Afídeos , Inseticidas , 4-Butirolactona/análogos & derivados , Animais , Piridinas , Sorghum , Compostos de Enxofre , TemperaturaRESUMO
Current assessments from the U.S. Environmental Protection Agency suggest that some current insecticides may be lost or severely restricted in the near future. An experiment was conducted from 2014 to 2015 at two locations in Mississippi to determine the impact of losses of insecticide classes on integrated pest management of insect pests in cotton. The treatments included cotton treated with all available classes of insecticides, cotton treated with all classes except neonicotinoids, cotton treated with all classes except pyrethroids, cotton treated with all classes except carbamates and organophosphates, and an untreated control. Plots were scouted weekly and insecticide applications were made with the most efficacious and economical insecticides for each treatment when that treatment reached threshold for a particular insect pest(s). The primary insects at both locations were tobacco thrips and tarnished plant bugs. Thrips pressure was similar at both locations and generally showed that all insecticide treatments provided a similar level of protection compared with the untreated control. At the Stoneville location where tarnished plant bug pressure was greatest, cotton yields and economic returns differed between plots where all classes of insecticides were applied compared with the untreated control and where neonicotinoids were excluded. However, in Starkville where tarnished plant bug pressure was less, there were no differences among treatments. Although yield and economic returns were similar in high tarnished plant bug pressure areas when using all classes compared with managing without pyrethroids or organophosphates, a rotation among all insecticide classes should be beneficial for resistance management in Mid-South cotton production.
Assuntos
Produtos Agrícolas/economia , Heterópteros , Controle de Insetos/normas , Inseticidas , Animais , Gossypium , Controle de Insetos/economia , MississippiRESUMO
Insecticidal efficacy of neonicotinoid insecticides used against tobacco thrips, Frankliniella fusca (Hinds) (Thysanoptera: Thripidae), in cotton, Gossypium hirisutum L. (Malvales: Malvaceae), was evaluated for field populations collected in Mississippi during 2014-2016. Resistance was documented in 16 and 57% of populations to imidacloprid and thiamethoxam, respectively. Resistance levels did not vary by host plant for any neonicotinoid, but resistance levels varied between the two main agricultural areas (Delta and Hills) of Mississippi and among years for some neonicotinoids. In spite of documented resistance, neonicotinoid seed treatments are still used on cotton in the midsouthern United States due to the lack of reliable alternative management strategies. The development of alternative thrips management strategies is critical to the sustainability of cotton production in the midsouthern United States.
Assuntos
Inseticidas , Neonicotinoides , Tisanópteros , Animais , Feminino , Gossypium , Resistência a Inseticidas , MississippiRESUMO
The primary management tactic for lepidopteran pests of cotton in the United States of America (USA) is the use of transgenic cotton that produces Bacillus thuringiensis Berliner (Bt) toxins. The primary target pests of this technology are Helicoverpa zea (Boddie) and Heliothis virescens (F.) in the eastern and central Cotton Belt of the USA. Concerns over the evolution of resistance in H. zea to Bt toxins and scrutiny of the necessity of Bt crops has escalated. We reviewed published and unpublished data from field trials of Bt cotton in the eastern and central Cotton Belt of the USA through 2015 to evaluate the effectiveness of Bt cotton (Bollgard, Bollgard II, WideStrike, WideStrike 3, and TwinLink). Bt cotton reduced insecticide usage, reduced heliothine pest numbers and damage, and provided a yield benefit, but Bollgard II and WideStrike efficacy declined in the Midsouth over the period evaluated. In the Southeastern region, heliothine damage remained constant through 2015, but yield benefits declined from 2010 until 2015. Resistance of H. zea to several Bt toxins is the most plausible explanation for the observed changes in Bt cotton efficacy. The introduction of new Bt toxins such as found in Widestrike 3 and Twinlink may preserve the benefits of Bt crops. However, while both Widestrike 3 and Twinlink had less damage than Widestrike, damage levels of both were similar to Bollgard II.
Assuntos
Bacillus thuringiensis , Proteínas de Bactérias/genética , Produtos Agrícolas , Inseticidas/administração & dosagem , Mariposas , Plantas Geneticamente Modificadas , Animais , Bacillus thuringiensis/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Controle de Insetos , Resistência a Inseticidas , Mariposas/efeitos dos fármacos , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/metabolismo , Estados UnidosRESUMO
Corn earworm, Helicoverpa zea (Boddie), commonly infests field corn, Zea mays (L.). The combination of corn plant biology, corn earworm behavior in corn ecosystems, and field corn value renders corn earworm management with foliar insecticides noneconomical. Corn technologies containing Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) were introduced that exhibit substantial efficacy against corn earworm and may reduce mycotoxin contamination in grain. The first generation Bt traits in field corn demonstrated limited activity on corn earworm feeding on grain. The pyramided corn technologies have greater cumulative protein concentrations and higher expression throughout the plant, so these corn traits should provide effective management of this pest. Additionally, reduced kernel injury may affect physical grain quality. Experiments were conducted during 2011-2012 to investigate corn earworm impact on field corn yield and grain quality. Treatments included field corn hybrids expressing the Herculex, YieldGard, and Genuity VT Triple Pro technologies. Supplemental insecticide treatments were applied every 1-2 d from silk emergence until silk senescence to create a range of injured kernels for each technology. No significant relationship between the number of corn earworm damaged kernels and yield was observed for any technology/hybrid. In these studies, corn earworm larvae did not cause enough damage to impact yield. Additionally, no consistent relationship between corn earworm damage and aflatoxin contamination was observed. Based on these data, the economic value of pyramided Bt corn traits to corn producers, in the southern United States, appears to be from management of other lepidopteran insect pests including European and southwestern corn borer.