Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson ; 331: 107051, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34455368

RESUMO

We studied the anisotropy of 1H NMR spin-lattice and spin-spin relaxations in a fresh celery stem experimentally and modeled the sample theoretically as the water-containing nano- and micro-cavities. The angular dependence of the spin-lattice and the spin-spin relaxation times was obtained, which clearly shows the presence of water-filled nano- and micro-cavities in the celery stem, which have elongated shapes and are related to non-spherical vascular cells in the stem. To explain the experimental data, we applied the relaxation theory developed by us and used previously to interpret similar effects in liquids in nanocavities located in biological tissues such as cartilages and tendons. Good agreement between the experimental data and theoretical results was obtained by adjusting the fitting parameters. The obtained values of standard deviations (0.33 for the mean polar angle and 0.1 for the mean azimuthal angle) indicate a noticeable ordering of the water-filled nano- and micro-cavities in the celery stem. Our approach allows the use of the NMR technique to experimentally determine the order parameters of the microscopic vascular structures in plants.


Assuntos
Imageamento por Ressonância Magnética , Tendões , Anisotropia , Espectroscopia de Ressonância Magnética , Caules de Planta
2.
Magn Reson Med ; 86(2): 935-942, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33724543

RESUMO

PURPOSE: Testing the potential use of saline suspension of polyvinylpyrrolidone (PVP)-coated gadolinium(Gd)-grafted detonation nanodiamonds (DND) as a novel contrast agent in MRI. METHODS: Stable saline suspensions of highly purified de-agglomerated Gd-grafted DND particles coated by a PVP protective shell were prepared. T1 and T2 proton relaxivities of the suspensions with varying gadolinium concentration were measured at 8 Tesla. A series of ex vivo (phantom) and in vivo dynamic scans were obtained in 3 Tesla MRI using PVP-coated Gd-grafted DND and gadoterate meglumin in equal concentrations of gadolinium, and then T1 -weighted hyperintensity was compared. RESULTS: The proton relaxivities of PVP-coated Gd-grafted DND were found to be r1 = 15.9 ± 0.8 s-1 mM-1 and r2 = 262 ± 15 s-1 mM-1 , respectively, which are somewhat less than those for uncoated Gd-grafted DND but still high enough. Ex vivo MRI evaluation of PVP-coated Gd-grafted DND results with a dose-dependent T1 -weighted hyperintensity with a significant advantage over the same for gadoterate meglumin. The same was found when the 2 contrast agents were tested in vivo. CONCLUSION: The novel MRI contrast agent - saline suspensions of PVP-coated Gd-grafted DND - provides significantly higher signal intensities than the common tracer gadoterate meglumin, therefore increasing its potential for a safer use in clinics.


Assuntos
Meios de Contraste , Nanodiamantes , Gadolínio , Imageamento por Ressonância Magnética , Povidona
3.
MAGMA ; 33(6): 885-888, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32347397

RESUMO

OBJECTIVES: Detonation nanodiamonds (DND) with Gd3+ ions directly grafted to the DND surface have recently demonstrated enhanced relaxivity for protons in aqueous suspensions. Herewith, the relaxivity measurements were done on a series of suspensions with the gadolinium content varied by changing number of Gd3+ ions grafted per each DND particle whereas the DND content in each suspension was kept the same. Such an approach to vary the contrast agent content differs from that commonly used in the relaxivity measurements. In the common approach, contrast agents are directly dissolved/suspended in media. Aiming to test validity of the unconventional approach, in the present study we follow the common way of measurement relaxivity: using variable concentrations of carriers (DND particles) in aqueous suspension keeping the number of Gd3+ ions per each carrier fixed. MATERIALS AND METHODS: 1H NMR relaxation measurements of aqueous suspensions of DND with Gd3+ ions directly grafted to the DND surface were carried out at room temperature (293 K or 20 °C) in the external magnetic field B0 = 8.0 T. RESULTS AND CONCLUSIONS: Comparative study of two approaches for measuring relaxivity in suspensions containing DND as magnetic entities' carriers reveals complete identity of techniques in use.


Assuntos
Nanodiamantes , Meios de Contraste , Gadolínio , Fenômenos Magnéticos , Imageamento por Ressonância Magnética , Suspensões
4.
J Magn Reson ; 263: 71-78, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26773529

RESUMO

Spin-spin and spin-lattice relaxations in liquid or gas entrapped in nanosized ellipsoidal cavities with different orientation ordering are theoretically investigated. The model is flexible in order to be applied to explain experimental results in cavities with various forms, from very prolate up to oblate ones, and different degree of ordering of nanocavities. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant, which depends on the form, size, and orientation of the cavity and number of nuclear spins in the cavity. It was shown that the transverse and longitudinal relaxation rates differently depend on the angle between the external magnetic field and cavity main axis. The calculation results for the local dipolar field, transverse and longitudinal relaxation times explain the angular dependencies observed in MRI experiments with biological objects: cartilage and tendon. Microstructure of these tissues can be characterized by the standard deviation of the Gaussian distribution of fibril orientations. The comparison of the theoretical and experimental results shows that the value of the standard deviation obtained at the matching of the calculation to experimental results can be used as a parameter characterizing the disorder in the biological sample.


Assuntos
Imageamento por Ressonância Magnética/métodos , Algoritmos , Anisotropia , Cartilagem/anatomia & histologia , Campos Eletromagnéticos , Modelos Teóricos , Distribuição Normal , Imagens de Fantasmas , Marcadores de Spin , Tendões/anatomia & histologia
5.
J Magn Reson ; 261: 175-80, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26583530

RESUMO

We study the spin-lattice relaxation of the nuclear spins in a liquid or a gas entrapped in nanosized ellipsoidal cavities with paramagnetic impurities. Two cases are considered where the major axes of cavities are in orientational order and isotropically disordered. The evolution equation and analytical expression for spin lattice relaxation time are obtained which give the dependence of the relaxation time on the structural parameters of a nanocavity and the characteristics of a gas or a liquid confined in nanocavities. For the case of orientationally ordered cavities, the relaxation process is exponential. When the nanocavities are isotropically disordered, the time dependence of the magnetization is significantly non-exponential. As shown for this case, the relaxation process is characterized by two time constants. The measurements of the relaxation time, along with the information about the cavity size, allow determining the shape and orientation of the nanocavity and concentration of the paramagnetic impurities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA