Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Neuroinform ; 18: 1331220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444756

RESUMO

Spiking neural network simulations are a central tool in Computational Neuroscience, Artificial Intelligence, and Neuromorphic Engineering research. A broad range of simulators and software frameworks for such simulations exist with different target application areas. Among these, PymoNNto is a recent Python-based toolbox for spiking neural network simulations that emphasizes the embedding of custom code in a modular and flexible way. While PymoNNto already supports GPU implementations, its backend relies on NumPy operations. Here we introduce PymoNNtorch, which is natively implemented with PyTorch while retaining PymoNNto's modular design. Furthermore, we demonstrate how changes to the implementations of common network operations in combination with PymoNNtorch's native GPU support can offer speed-up over conventional simulators like NEST, ANNarchy, and Brian 2 in certain situations. Overall, we show how PymoNNto's modular and flexible design in combination with PymoNNtorch's GPU acceleration and optimized indexing operations facilitate research and development of spiking neural networks in the Python programming language.

2.
Sci Rep ; 14(1): 1945, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253595

RESUMO

Theory of Mind is referred to the ability of inferring other's mental states, and it plays a crucial role in social cognition and learning. Biological evidences indicate that complex circuits are involved in this ability, including the mirror neuron system. The mirror neuron system influences imitation abilities and action understanding, leading to learn through observing others. To simulate this imitative learning behavior, a Theory-of-Mind-based Imitative Reinforcement Learning (ToM-based ImRL) framework is proposed. Employing the bio-inspired spiking neural networks and the mechanisms of the mirror neuron system, ToM-based ImRL is a bio-inspired computational model which enables an agent to effectively learn how to act in an interactive environment through observing an expert, inferring its goals, and imitating its behaviors. The aim of this paper is to review some computational attempts in modeling ToM and to explain the proposed ToM-based ImRL framework which is tested in the environment of River Raid game from Atari 2600 series.


Assuntos
Teoria da Mente , Aprendizagem , Reforço Psicológico , Redes Neurais de Computação , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA