RESUMO
Reference anatomies of the brain ('templates') and corresponding atlases are the foundation for reporting standardized neuroimaging results. Currently, there is no registry of templates and atlases; therefore, the redistribution of these resources occurs either bundled within existing software or in ad hoc ways such as downloads from institutional sites and general-purpose data repositories. We introduce TemplateFlow as a publicly available framework for human and non-human brain models. The framework combines an open database with software for access, management, and vetting, allowing scientists to share their resources under FAIR-findable, accessible, interoperable, and reusable-principles. TemplateFlow enables multifaceted insights into brains across species, and supports multiverse analyses testing whether results generalize across standard references, scales, and in the long term, species.
Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Neuroimagem , Encéfalo , Bases de Dados Factuais , Resolução de ProblemasRESUMO
The sharing of research data is essential to ensure reproducibility and maximize the impact of public investments in scientific research. Here, we describe OpenNeuro, a BRAIN Initiative data archive that provides the ability to openly share data from a broad range of brain imaging data types following the FAIR principles for data sharing. We highlight the importance of the Brain Imaging Data Structure standard for enabling effective curation, sharing, and reuse of data. The archive presently shares more than 600 datasets including data from more than 20,000 participants, comprising multiple species and measurement modalities and a broad range of phenotypes. The impact of the shared data is evident in a growing number of published reuses, currently totalling more than 150 publications. We conclude by describing plans for future development and integration with other ongoing open science efforts.
Assuntos
Encéfalo , Bases de Dados Factuais/estatística & dados numéricos , Disseminação de Informação , Neuroimagem , Neurociências/organização & administração , HumanosRESUMO
Having the means to share research data openly is essential to modern science. For human research, a key aspect in this endeavor is obtaining consent from participants, not just to take part in a study, which is a basic ethical principle, but also to share their data with the scientific community. To ensure that the participants' privacy is respected, national and/or supranational regulations and laws are in place. It is, however, not always clear to researchers what the implications of those are, nor how to comply with them. The Open Brain Consent (https://open-brain-consent.readthedocs.io) is an international initiative that aims to provide researchers in the brain imaging community with information about data sharing options and tools. We present here a short history of this project and its latest developments, and share pointers to consent forms, including a template consent form that is compliant with the EU general data protection regulation. We also share pointers to an associated data user agreement that is not only useful in the EU context, but also for any researchers dealing with personal (clinical) data elsewhere.
Assuntos
Encéfalo/diagnóstico por imagem , Disseminação de Informação , Consentimento Livre e Esclarecido , Neuroimagem , Sujeitos da Pesquisa , Humanos , Disseminação de Informação/ética , Consentimento Livre e Esclarecido/ética , Neuroimagem/éticaRESUMO
Animal neuroimaging studies can provide unique insights into brain structure and function, and can be leveraged to bridge the gap between animal and human neuroscience. In part, this power comes from the ability to combine mechanistic interventions with brain-wide neuroimaging. Due to their phylogenetic proximity to humans, nonhuman primate neuroimaging holds particular promise. Because nonhuman primate neuroimaging studies are often underpowered, there is a great need to share data amongst translational researchers. Data sharing efforts have been limited, however, by the lack of standardized tools and repositories through which nonhuman neuroimaging data can easily be archived and accessed. Here, we provide an extension of the Neurovault framework to enable sharing of statistical maps and related voxelwise neuroimaging data from other species and template-spaces. Neurovault, which was previously limited to human neuroimaging data, now allows researchers to easily upload and share nonhuman primate neuroimaging results. This promises to facilitate open, integrative, cross-species science while affording researchers the increased statistical power provided by data aggregation. In addition, the Neurovault code-base now enables the addition of other species and template-spaces. Together, these advances promise to bring neuroimaging data sharing to research in other species, for supplemental data, location-based atlases, and data that would otherwise be relegated to a "file-drawer". As increasing numbers of researchers share their nonhuman neuroimaging data on Neurovault, this resource will enable novel, large-scale, cross-species comparisons that were previously impossible.
Assuntos
Encéfalo/diagnóstico por imagem , Disseminação de Informação/métodos , Neuroimagem , Animais , Bases de Dados Factuais , Neuroimagem Funcional , Macaca mulatta , Imageamento por Ressonância Magnética , Neurociências , Tomografia por Emissão de PósitronsRESUMO
Population imaging markedly increased the size of functional-imaging datasets, shedding new light on the neural basis of inter-individual differences. Analyzing these large data entails new scalability challenges, computational and statistical. For this reason, brain images are typically summarized in a few signals, for instance reducing voxel-level measures with brain atlases or functional modes. A good choice of the corresponding brain networks is important, as most data analyses start from these reduced signals. We contribute finely-resolved atlases of functional modes, comprising from 64 to 1024 networks. These dictionaries of functional modes (DiFuMo) are trained on millions of fMRI functional brain volumes of total size 2.4 âTB, spanned over 27 studies and many research groups. We demonstrate the benefits of extracting reduced signals on our fine-grain atlases for many classic functional data analysis pipelines: stimuli decoding from 12,334 brain responses, standard GLM analysis of fMRI across sessions and individuals, extraction of resting-state functional-connectomes biomarkers for 2500 individuals, data compression and meta-analysis over more than 15,000 statistical maps. In each of these analysis scenarii, we compare the performance of our functional atlases with that of other popular references, and to a simple voxel-level analysis. Results highlight the importance of using high-dimensional "soft" functional atlases, to represent and analyze brain activity while capturing its functional gradients. Analyses on high-dimensional modes achieve similar statistical performance as at the voxel level, but with much reduced computational cost and higher interpretability. In addition to making them available, we provide meaningful names for these modes, based on their anatomical location. It will facilitate reporting of results.
Assuntos
Atlas como Assunto , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Humanos , Rede Nervosa/diagnóstico por imagemRESUMO
Functional magnetic resonance imaging (fMRI) is a standard tool to investigate the neural correlates of cognition. fMRI noninvasively measures brain activity, allowing identification of patterns evoked by tasks performed during scanning. Despite the long history of this technique, the idiosyncrasies of each dataset have led to the use of ad-hoc preprocessing protocols customized for nearly every different study. This approach is time consuming, error prone and unsuitable for combining datasets from many sources. Here we showcase fMRIPrep (http://fmriprep.org), a robust tool to prepare human fMRI data for statistical analysis. This software instrument addresses the reproducibility concerns of the established protocols for fMRI preprocessing. By leveraging the Brain Imaging Data Structure to standardize both the input datasets (MRI data as stored by the scanner) and the outputs (data ready for modeling and analysis), fMRIPrep is capable of preprocessing a diversity of datasets without manual intervention. In support of the growing popularity of fMRIPrep, this protocol describes how to integrate the tool in a task-based fMRI investigation workflow.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/normas , Padrões de Referência , Descanso/fisiologia , Fluxo de TrabalhoRESUMO
The neuroimaging community is steering towards increasingly large sample sizes, which are highly heterogeneous because they can only be acquired by multi-site consortia. The visual assessment of every imaging scan is a necessary quality control step, yet arduous and time-consuming. A sizeable body of evidence shows that images of low quality are a source of variability that may be comparable to the effect size under study. We present the MRIQC Web-API, an open crowdsourced database that collects image quality metrics extracted from MR images and corresponding manual assessments by experts. The database is rapidly growing, and currently contains over 100,000 records of image quality metrics of functional and anatomical MRIs of the human brain, and over 200 expert ratings. The resource is designed for researchers to share image quality metrics and annotations that can readily be reused in training human experts and machine learning algorithms. The ultimate goal of the database is to allow the development of fully automated quality control tools that outperform expert ratings in identifying subpar images.
Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem , Crowdsourcing , Bases de Dados Factuais , Educação Profissionalizante , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/normas , Neuroimagem/normasRESUMO
The dataset enables exploration of higher-order cognitive faculties, self-generated mental experience, and personality features in relation to the intrinsic functional architecture of the brain. We provide multimodal magnetic resonance imaging (MRI) data and a broad set of state and trait phenotypic assessments: mind-wandering, personality traits, and cognitive abilities. Specifically, 194 healthy participants (between 20 and 75 years of age) filled out 31 questionnaires, performed 7 tasks, and reported 4 probes of in-scanner mind-wandering. The scanning session included four 15.5-min resting-state functional MRI runs using a multiband EPI sequence and a hig h-resolution structural scan using a 3D MP2RAGE sequence. This dataset constitutes one part of the MPI-Leipzig Mind-Brain-Body database.
Assuntos
Cognição , Conectoma , Personalidade , Atenção , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
A laboratory's programming language has wide-ranging implications. As demands towards scientific programming change and languages evolve, investigators may look to change their existing software stack. Following up on a recent online debate, we discuss key considerations and challenges in choosing and changing languages and suggest solutions for investigators looking to switch.
Assuntos
Pesquisa Biomédica , Linguagens de Programação , Ciência , Pesquisa Biomédica/métodos , Pesquisa Biomédica/normas , Humanos , Ciência/métodos , Ciência/normasRESUMO
Preprocessing of functional magnetic resonance imaging (fMRI) involves numerous steps to clean and standardize the data before statistical analysis. Generally, researchers create ad hoc preprocessing workflows for each dataset, building upon a large inventory of available tools. The complexity of these workflows has snowballed with rapid advances in acquisition and processing. We introduce fMRIPrep, an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for fMRI data. fMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing without manual intervention. By introducing visual assessment checkpoints into an iterative integration framework for software testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data collection. Additionally, fMRIPrep introduces less uncontrolled spatial smoothness than observed with commonly used preprocessing tools. fMRIPrep equips neuroscientists with an easy-to-use and transparent preprocessing workflow, which can help ensure the validity of inference and the interpretability of results.
Assuntos
Imageamento por Ressonância Magnética/métodos , Fluxo de Trabalho , Mapeamento Encefálico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos TestesRESUMO
Over the past few decades, neuroscience research has illuminated the neural mechanisms supporting learning from reward feedback. Learning paradigms are increasingly being extended to study mood and psychiatric disorders as well as addiction. However, one potentially critical characteristic that this research ignores is the effect of time on learning: human feedback learning paradigms are usually conducted in a single rapidly paced session, whereas learning experiences in ecologically relevant circumstances and in animal research are almost always separated by longer periods of time. In our experiments, we examined reward learning in short condensed sessions distributed across weeks versus learning completed in a single "massed" session in male and female participants. As expected, we found that after equal amounts of training, accuracy was matched between the spaced and massed conditions. However, in a 3-week follow-up, we found that participants exhibited significantly greater memory for the value of spaced-trained stimuli. Supporting a role for short-term memory in massed learning, we found a significant positive correlation between initial learning and working memory capacity. Neurally, we found that patterns of activity in the medial temporal lobe and prefrontal cortex showed stronger discrimination of spaced- versus massed-trained reward values. Further, patterns in the striatum discriminated between spaced- and massed-trained stimuli overall. Our results indicate that single-session learning tasks engage partially distinct learning mechanisms from distributed training. Our studies begin to address a large gap in our knowledge of human learning from reinforcement, with potential implications for our understanding of mood disorders and addiction.SIGNIFICANCE STATEMENT Humans and animals learn to associate predictive value with stimuli and actions, and these values then guide future behavior. Such reinforcement-based learning often happens over long time periods, in contrast to most studies of reward-based learning in humans. In experiments that tested the effect of spacing on learning, we found that associations learned in a single massed session were correlated with short-term memory and significantly decayed over time, whereas associations learned in short massed sessions over weeks were well maintained. Additionally, patterns of activity in the medial temporal lobe and prefrontal cortex discriminated the values of stimuli learned over weeks but not minutes. These results highlight the importance of studying learning over time, with potential applications to drug addiction and psychiatry.
Assuntos
Mapeamento Encefálico , Condicionamento Operante/fisiologia , Córtex Pré-Frontal/fisiologia , Recompensa , Lobo Temporal/fisiologia , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Estimulação Luminosa , Reforço Psicológico , Fatores de Tempo , Adulto JovemRESUMO
We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with millisecond temporal resolution and unique source imaging capabilities. So far, BIDS was a solution to organise magnetic resonance imaging (MRI) data. The nature and acquisition parameters of MRI and MEG data are strongly dissimilar. Although there is no standard data format for MEG, we propose MEG-BIDS as a principled solution to store, organise, process and share the multidimensional data volumes produced by the modality. The standard also includes well-defined metadata, to facilitate future data harmonisation and sharing efforts. This responds to unmet needs from the multimodal neuroimaging community and paves the way to further integration of other techniques in electrophysiology. MEG-BIDS builds on MRI-BIDS, extending BIDS to a multimodal data structure. We feature several data-analytics software that have adopted MEG-BIDS, and a diverse sample of open MEG-BIDS data resources available to everyone.
Assuntos
Encéfalo , Magnetoencefalografia , Neuroimagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , HumanosRESUMO
We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science.
Assuntos
Biologia Computacional/métodos , Software , Encéfalo/diagnóstico por imagem , Humanos , Neuroimagem , Reprodutibilidade dos TestesRESUMO
Making replication studies widely conducted and published requires new incentives. Academic awards can provide such incentives by highlighting the best and most important replications. The Organization for Human Brain Mapping (OHBM) has led such efforts by recently introducing the OHBM Replication Award. Other communities can adopt this approach to promote replications and reduce career cost for researchers performing them.
Assuntos
Distinções e Prêmios , Humanos , PesquisadoresRESUMO
Here we present preprocessed MRI data of 265 participants from the Consortium for Neuropsychiatric Phenomics (CNP) dataset. The preprocessed dataset includes minimally preprocessed data in the native, MNI and surface spaces accompanied with potential confound regressors, tissue probability masks, brain masks and transformations. In addition the preprocessed dataset includes unthresholded group level and single subject statistical maps from all tasks included in the original dataset. We hope that availability of this dataset will greatly accelerate research.
RESUMO
A central goal of cognitive neuroscience is to decode human brain activity-that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive-that is, capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a probabilistic decoding framework based on a novel topic model-Generalized Correspondence Latent Dirichlet Allocation-that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to "seed" decoder priors with arbitrary images and text-enabling researchers, for the first time, to generate quantitative, context-sensitive interpretations of whole-brain patterns of brain activity.