Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Microsc Microanal ; 29(Supplement_1): 589-590, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613014
2.
Microsc Microanal ; 29(Supplement_1): 596-597, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613188
4.
Microsc Microanal ; 29(Supplement_1): 600-601, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613400
6.
Ann Med Surg (Lond) ; 70: 102830, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34557298

RESUMO

INTRODUCTION: Acquired hemophilia A (AHA) also known as acquired factor VIII (FVIII) deficiency is an acquired inhibition of coagulation by antibodies that either inhibit the activity or increase the clearance of a clotting factor (FVIII). Mortality in patients presenting with AHA is related to bleeding and hemorrhage, therefore rapid diagnosis and effective treatment are needed. CASE PRESENTATION: We present a case of a 59-year-old male with acquired VIII deficiency presenting with diffuse ecchymosis and bleeding diathesis. The patient was treated successfully with steroids and rituximab. CLINICAL DISCUSSION: It is a rare autoimmune disorder caused by neutralization of Factor VIII by IgG antibodies. This can lead to severe, life threatening bleeding. Treatment involves replacement of FVIII and immunosuppression. CONCLUSION: A key point to successfully treating AHA is to remove inhibitors and stop bleeding. Mortality in patients presenting with AHA is related to the bleeding and hemorrhage, therefore rapid diagnosis and effective treatment are needed.

7.
Microsc Microanal ; 27(1): 140-148, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33468273

RESUMO

Current reconstruction methodologies for atom probe tomography (APT) contain serious geometric artifacts that are difficult to address due to their reliance on empirical factors to generate a reconstructed volume. To overcome this limitation, a reconstruction technique is demonstrated where the analyzed volume is instead defined by the specimen geometry and crystal structure as determined by transmission electron microscopy (TEM) and diffraction acquired before and after APT analysis. APT data are reconstructed using a bottom-up approach, where the post-APT TEM image is used to define the substrate upon which APT detection events are placed. Transmission electron diffraction enables the quantification of the relationship between atomic positions and the evaporated specimen volume. Using an example dataset of ZnMgO:Ga grown epitaxially on c-plane sapphire, a volume is reconstructed that has the correct geometry and atomic spacings in 3D. APT data are thus reconstructed in 3D without using empirical parameters for the reverse projection reconstruction algorithm.

8.
Nano Lett ; 20(10): 7059-7067, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32945683

RESUMO

Nanoscale superlattices represent a compelling platform for designed materials as the specific identity and spatial arrangement of constituent layers can lead to tunable properties. A number of kinetically stabilized, nonepitaxial superlattices with almost limitless structural tunability have been reported in telluride and selenide chemistries but have not yet been extended to sulfides. Here, we present SnS-TaS2 nanoscale superlattices with tunable layer architecture. Layered amorphous precursors are prepared as thin films programmed to mimic the targeted superlattice; subsequent low temperature annealing activates self-assembly into crystalline nanocomposites. We investigate structure and composition of superlattices comprised of monolayers of TaS2 and 3-7 monolayers of SnS per repeating unit. Furthermore, a graded precursor preparation approach is introduced, allowing stabilization of superlattices with multiple stacking sequences in a single preparation. Controlled synthesis of the architecture of nanoscale superlattices is a critical path toward tuning their exotic properties and enabling integration with electronic, optical, or quantum devices.

9.
Microsc Microanal ; 26(2): 258-266, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32160938

RESUMO

This paper describes initial experimental results from an extreme ultraviolet (EUV) radiation-pulsed atom probe microscope. Femtosecond-pulsed coherent EUV radiation of 29.6 nm wavelength (41.85 eV photon energy), obtained through high harmonic generation in an Ar-filled hollow capillary waveguide, successfully triggered controlled field ion emission from the apex of amorphous SiO2 specimens. The calculated composition is stoichiometric within the error of the measurement and effectively invariant of the specimen base temperature in the range of 25 K to 150 K. Photon energies available in the EUV band are significantly higher than those currently used in the state-of-the-art near-ultraviolet laser-pulsed atom probe, which enables the possibility of additional ionization and desorption pathways. Pulsed coherent EUV light is a new and potential alternative to near-ultraviolet radiation for atom probe tomography.

10.
Ultramicroscopy ; 209: 112882, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31765818

RESUMO

Relating a crystal's microscopic structure-such as orientation and size-to a material's macroscopic properties is of great importance in materials science. Although most crystal orientation microscopy is performed in the scanning electron microscope (SEM), transmission electron microscopy (TEM)-based methods have a number of benefits, including higher spatial resolution. Current TEM orientation methods have either specific hardware requirements or use software that has limited scope, utility, or availability. In this article, a technique is described for orientation mapping using Kikuchi diffraction patterns generated from a focused STEM probe. One key advantage is that indexing and analysis of the patterns and maps occurs in the robust OIM Analysis software, currently widely used for electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD) analysis. It was found that with minimal to no image processing and by changing only a few software parameters, reliable indexing of Kikuchi patterns is possible. Three samples, a deformed ß-Titanium (Ti), a medium carbon heat-treated steel, and BaCe0.8Y0.2O3-δ were tested to determine the effectiveness of the approach. In all three measurements the algorithms effectively and reliably determined the phases and the crystal orientations of the features measured. For the two orientation maps produced, less than 5% of the patterns were misindexed including boundary areas where overlapping patterns existed. An angular resolution of 0.15° was achieved while features <25 nm were able to be spatially resolved.

11.
Microsc Microanal ; 25(5): 1160-1166, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31475657

RESUMO

Single-crystalline gallium arsenide (GaAs) grown by various techniques can exhibit hillock defects on the surface when sub-optimal growth conditions are employed. The defects act as nonradiative recombination centers and limit solar cell performance. In this paper, we applied near-field transport imaging to study hillock defects in a GaAs thin film. On the same defects, we also performed near-field cathodoluminescence, standard cathodoluminescence, electron-backscattered diffraction, transmission electron microscopy, and energy-dispersive X-ray spectrometry. We found that the luminescence intensity around the hillock area is two orders of magnitude lower than on the area without hillock defects in the millimeter region, and the excess carrier diffusion length is degraded by at least a factor of five with significant local variation. The optical and transport properties are affected over a significantly larger region than the observed topography and crystallographic and chemical compositions associated with the defect.

12.
ACS Omega ; 4(4): 7436-7447, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459840

RESUMO

We used high-throughput experimental screening methods to unveil the physical and chemical properties of Mn1-x Zn x O wurtzite alloys and identify their appropriate composition for effective water splitting application. The Mn1-x Zn x O thin films were synthesized using combinatorial pulsed laser deposition, permitting for characterization of a wide range of compositions with x varying from 0 to 1. The solubility limit of ZnO in MnO was determined using the disappearing phase method from X-ray diffraction and X-ray fluorescence data and found to increase with decreasing substrate temperature due to kinetic limitations of the thin-film growth at relatively low temperature. Optical measurements indicate the strong reduction of the optical band gap down to 2.1 eV at x = 0.5 associated with the rock salt-to-wurtzite structural transition in Mn1-x Zn x O alloys. Transmission electron microscopy results show evidence of a homogeneous wurtzite alloy system for a broad range of Mn1-x Zn x O compositions above x = 0.4. The wurtzite Mn1-x ZnxO samples with the 0.4 < x < 0.6 range were studied as anodes for photoelectrochemical water splitting, with a maximum current density of 340 µA cm-2 for 673 nm-thick films. These Mn1-x Zn x O films were stable in pH = 10, showing no evidence of photocorrosion or degradation after 24 h under water oxidation conditions. Doping Mn1-x Zn x O materials with Ga dramatically increases the electrical conductivity of Mn1-x Zn x O up to ∼1.9 S/cm for x = 0.48, but these doped samples are not active in water splitting. Mott-Schottky and UPS/XPS measurements show that the presence of dopant atoms reduces the space charge region and increases the number of mid-gap surface states. Overall, this study demonstrates that Mn1-x Zn x O alloys hold promise for photoelectrochemical water splitting, which could be enhanced with further tailoring of their electronic properties.

13.
Proc Natl Acad Sci U S A ; 116(30): 14829-14834, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31270238

RESUMO

Inorganic nitrides with wurtzite crystal structures are well-known semiconductors used in optical and electronic devices. In contrast, rocksalt-structured nitrides are known for their superconducting and refractory properties. Breaking this dichotomy, here we report ternary nitride semiconductors with rocksalt crystal structures, remarkable electronic properties, and the general chemical formula Mgx TM 1-xN (TM = Ti, Zr, Hf, Nb). Our experiments show that these materials form over a broad metal composition range, and that Mg-rich compositions are nondegenerate semiconductors with visible-range optical absorption onsets (1.8 to 2.1 eV) and up to 100 cm2 V-1⋅s-1 electron mobility for MgZrN2 grown on MgO substrates. Complementary ab initio calculations reveal that these materials have disorder-tunable optical absorption, large dielectric constants, and electronic bandgaps that are relatively insensitive to disorder. These ternary Mgx TM 1-xN semiconductors are also structurally compatible both with binary TMN superconductors and main-group nitride semiconductors along certain crystallographic orientations. Overall, these results highlight Mgx TM 1-xN as a class of materials combining the semiconducting properties of main-group wurtzite nitrides and rocksalt structure of superconducting transition-metal nitrides.

15.
MRS Adv ; 4(44-45)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-36452273

RESUMO

Pulsed coherent extreme ultraviolet (EUV) radiation is a potential alternative to pulsed near-ultraviolet (NUV) wavelengths for atom probe tomography. EUV radiation has the benefit of high absorption within the first few nm of the sample surface for elements across the entire periodic table. In addition, EUV radiation may also offer athermal field ion emission pathways through direct photoionization or core-hole Auger decay processes, which are not possible with the (much lower) photon energies used in conventional NUV laser-pulsed atom probe. We report preliminary results from what we believe to be the world's first EUV radiation-pulsed atom probe microscope. The instrument consists of a femtosecond-pulsed, coherent EUV radiation source interfaced to a local electrode atom probe tomograph by means of a vacuum manifold beamline. EUV photon-assisted field ion emission (of substrate atoms) has been demonstrated on various insulating, semiconducting, and metallic specimens. Select examples are shown.

16.
Ultramicroscopy ; 195: 32-46, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30179773

RESUMO

Atom probe tomography reconstructions provide valuable information on nanometer-scale compositional variations within materials. As such, the spatial accuracy of the reconstructions is of primary importance for the resulting conclusions to be valid. Here, the use of transmission electron microscopy images before and after atom probe analysis to provide additional information and constraints is examined for a number of different materials. In particular, the consistency between the input reconstruction parameters and the output reconstruction is explored. It is demonstrated that it is possible to generate reconstructions in which the input and known values are completely consistent with the output reconstructions. Yet, it is also found that for all of the datasets examined, a particular power law relationship exists such that, if the image compression factor or detection efficiency is not constrained, a series of similarly spatially accurate reconstructions results. However, if one of these values can be independently assessed, then the other is known as well. Means of incorporating these findings and this general methodology into reconstruction protocols are also discussed.

17.
Nat Commun ; 9(1): 2553, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959330

RESUMO

Hydrothermal synthesis is challenging in metal oxide systems with diverse polymorphism, as reaction products are often sensitive to subtle variations in synthesis parameters. This sensitivity is rooted in the non-equilibrium nature of low-temperature crystallization, where competition between different metastable phases can lead to complex multistage crystallization pathways. Here, we propose an ab initio framework to predict how particle size and solution composition influence polymorph stability during nucleation and growth. We validate this framework using in situ X-ray scattering, by monitoring how the hydrothermal synthesis of MnO2 proceeds through different crystallization pathways under varying solution potassium ion concentrations ([K+] = 0, 0.2, and 0.33 M). We find that our computed size-dependent phase diagrams qualitatively capture which metastable polymorphs appear, the order of their appearance, and their relative lifetimes. Our combined computational and experimental approach offers a rational and systematic paradigm for the aqueous synthesis of target metal oxides.

18.
Rev Sci Instrum ; 89(5): 053706, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864799

RESUMO

Previous work has shown that pre- and post-experiment quantification of atom probe tomography (APT) specimen geometry using electron microscopy can constrain otherwise unknown parameters, leading to an improvement in data fidelity. To that end, an electron microscopy and diffraction system has been developed for in situ compatibility with modern APT hardware. The system is capable of secondary and backscattered scanning electron imaging, bright field and dark field scanning transmission electron imaging, and scanning transmission electron diffraction. Additionally, the system is also capable of in situ dynamic electron diffraction experiments using laser pulsed heating of the APT specimen.

19.
J Appl Phys ; 123(16)2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29725138

RESUMO

Cadmium telluride (CdTe) high purity, bulk, crystal ingots doped with phosphorus were grown by the vertical Bridgman melt growth technique to understand and improve dopant solubility and activation. Large net carrier densities have been reproducibly obtained from as-grown ingots, indicating successful incorporation of dopants into the lattice. However, net carrier density values are orders of magnitude lower than the solubility of P in CdTe as reported in literature, 1018/cm3 to 1019/cm3 [J. H. Greenberg, J. Cryst. Growth 161, 1-11 (1996) and R. B. Hall and H. H. Woodbury, J. Appl. Phys. 39(12), 5361-5365 (1968)], despite comparable starting charge dopant densities. Growth conditions, such as melt stoichiometry and post growth cooling, are shown to have significant impacts on dopant solubility. This study demonstrates that a significant portion of the dopant becomes incorporated into second phase defects as compounds of cadmium and phosphorous, such as cadmium phosphide, which inhibits dopant incorporation into the lattice and limits maximum attainable net carrier density in bulk crystals. Here, we present an extensive study on the characteristics of these second phase defects in relation to their composition and formation kinetics while providing a pathway to minimize their formation and enhance solubility.

20.
Adv Mater ; 30(25): e1800559, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29744947

RESUMO

Many technologically critical materials are metastable under ambient conditions, yet the understanding of how to rationally design and guide the synthesis of these materials is limited. This work presents an integrated approach that targets a metastable lead-free piezoelectric polymorph of SrHfO3 . First-principles calculations predict that the previous experimentally unrealized, metastable P4mm phase of SrHfO3 should exhibit a direct piezoelectric response (d33 ) of 36.9 pC N-1 (compared to d33 = 0 for the ground state). Combining computationally optimized substrate selection and synthesis conditions lead to the epitaxial stabilization of the polar P4mm phase of SrHfO3 on SrTiO3 . The films are structurally consistent with the theory predictions. A ferroelectric-induced large signal effective converse piezoelectric response of 5.2 pm V-1 for a 35 nm film is observed, indicating the ability to predict and target multifunctionality. This illustrates a coupled theory-experimental approach to the discovery and realization of new multifunctional polymorphs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA