Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ ; 9: e12534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34909276

RESUMO

Ephemeral wetlands are commonly embedded within pine uplands of the southeastern United States. These wetlands support diverse communities but have often been degraded by a lack of growing-season fires that historically maintained the vegetation structure. In the absence of fire, wetlands develop a dense mid-story of woody vegetation that increases canopy cover and decreases the amount of herbaceous vegetation. To understand how reduced fire frequency impacts wetland processes, we measured leaf litter breakdown rates and invertebrate communities using three common plant species (Longleaf Pine (Pinus palustris), Pineland Threeawn Grass (Aristida stricta), and Black Gum (Nyssa sylvatica)) that occur in pine flatwoods wetlands located on Eglin Air Force Base, Florida. We also tested whether or not the overall habitat type within a wetland (fire maintained or fire suppressed) affected these processes. We placed leaf packs containing 15.0 g of dried leaf litter from each species in both fire-maintained and fire-suppressed sections of three wetlands, removing them after 103-104 days submerged in the wetland. The amount of leaf litter remaining at the end of the study varied across species (N. sylvatica = 7.97 ± 0.17 g, A. stricta = 11.84 ± 0.06 g, and P. palustris = 11.37 ± 0.07 g (mean ± SE)) and was greater in fire-maintained habitat (leaf type: F 2,45 = 437.2, P < 0.001; habitat type: F 1,45 = 4.6, P = 0.037). We identified an average of 260 ± 33.5 (SE) invertebrates per leaf pack (range: 19-1,283), and the most abundant taxonomic groups were Cladocera, Isopoda, Acariformes, and Diptera. Invertebrate relative abundance varied significantly among litter species (approximately 39.9 ± 9.4 invertebrates per gram of leaf litter remaining in N. sylvatica leaf packs, 27.2 ± 5.3 invertebrates per gram of A. stricta, and 14.6 ± 3.1 invertebrates per gram of P. palustris (mean ± SE)) but not habitat type. However, both habitat (pseudo-F1,49 = 4.30, P = 0.003) and leaf litter type (pseudo-F2,49 = 3.62, P = 0.001) had a significant effect on invertebrate community composition. Finally, this work was part of ongoing projects focusing on the conservation of the critically imperiled Reticulated Flatwoods Salamander (Ambystoma bishopi), which breeds exclusively in pine flatwoods wetlands, and we examined the results as they relate to potential prey items for larval flatwoods salamanders. Overall, our results suggest that the vegetation changes associated with a lack of growing-season fires can impact both invertebrate communities and leaf litter breakdown.

2.
PLoS One ; 15(8): e0237737, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32822355

RESUMO

Individual growth rates are intrinsically related to survival and lifetime reproductive success and hence, are key determinants of population growth. Efforts to quantify age-size relationships are hampered by difficulties in aging individuals in wild populations. In addition, species with complex life-histories often show distinct shifts in growth that cannot be readily accommodated by traditional modelling techniques. Amphibians are often characterized by rapid larval growth, cessation of growth prior to metamorphosis, and resumption of growth in the adult stage. Compounding issues of non-linear growth, amphibian monitoring programs typically sample larval and adult populations using dissimilar methods. Here we present the first multistage growth model that combines disparate data collected across life-history stages. We model the growth of the endangered Reticulated Flatwoods Salamander, Ambystoma bishopi, in a Bayesian framework, that accounts for unknown ages, individual heterogeneity, and reconciles dip-net and drift fence sampling designs. Flatwoods salamanders achieve 60% of growth in the first 3 months of life but can survive for up to 13 years as a terrestrial adult. We find evidence for marked variability in growth rate, the timing and age at metamorphosis, and maximum size, within populations. Average size of metamorphs in a given year appeared strongly dependent on hydroperiod, and differed by >10mm across years with successful recruitment. In contrast, variation in the sizes of emerging metamorphs appeared relatively constant across years. An understanding of growth will contribute to the development of population viability analyses for flatwoods salamanders, will guide management actions, and will ultimately aid the recovery of the species. Our model formulation has broad applicability to amphibians, and likely any stage-structured organism in which homogenous data cannot be collected across life-stages. The tendency to ignore stage-structure or omit non-conforming data in growth analyses can no longer be afforded given the high stakes of management decisions, particularly for endangered or at-risk populations.


Assuntos
Ambystoma/crescimento & desenvolvimento , Urodelos/crescimento & desenvolvimento , Animais , Tamanho Corporal , Espécies em Perigo de Extinção , Larva/crescimento & desenvolvimento , Metamorfose Biológica , Modelos Biológicos
3.
Nat Commun ; 9(1): 3926, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254220

RESUMO

Changing climate will impact species' ranges only when environmental variability directly impacts the demography of local populations. However, measurement of demographic responses to climate change has largely been limited to single species and locations. Here we show that amphibian communities are responsive to climatic variability, using >500,000 time-series observations for 81 species across 86 North American study areas. The effect of climate on local colonization and persistence probabilities varies among eco-regions and depends on local climate, species life-histories, and taxonomic classification. We found that local species richness is most sensitive to changes in water availability during breeding and changes in winter conditions. Based on the relationships we measure, recent changes in climate cannot explain why local species richness of North American amphibians has rapidly declined. However, changing climate does explain why some populations are declining faster than others. Our results provide important insights into how amphibians respond to climate and a general framework for measuring climate impacts on species richness.


Assuntos
Anfíbios/fisiologia , Mudança Climática , Clima , Ecossistema , Algoritmos , Anfíbios/classificação , Distribuição Animal , Animais , Geografia , Modelos Teóricos , América do Norte , Dinâmica Populacional , Estações do Ano , Especificidade da Espécie , Temperatura
4.
Sci Rep ; 6: 25625, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27212145

RESUMO

Since amphibian declines were first proposed as a global phenomenon over a quarter century ago, the conservation community has made little progress in halting or reversing these trends. The early search for a "smoking gun" was replaced with the expectation that declines are caused by multiple drivers. While field observations and experiments have identified factors leading to increased local extinction risk, evidence for effects of these drivers is lacking at large spatial scales. Here, we use observations of 389 time-series of 83 species and complexes from 61 study areas across North America to test the effects of 4 of the major hypothesized drivers of declines. While we find that local amphibian populations are being lost from metapopulations at an average rate of 3.79% per year, these declines are not related to any particular threat at the continental scale; likewise the effect of each stressor is variable at regional scales. This result - that exposure to threats varies spatially, and populations vary in their response - provides little generality in the development of conservation strategies. Greater emphasis on local solutions to this globally shared phenomenon is needed.


Assuntos
Anfíbios/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Medição de Risco/métodos , Anfíbios/classificação , Animais , Mudança Climática , Espécies em Perigo de Extinção , Europa (Continente) , Extinção Biológica , Geografia , Modelos Biológicos , América do Norte , Densidade Demográfica , Dinâmica Populacional , Fatores de Risco
5.
PLoS One ; 11(2): e0150169, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26910245

RESUMO

The hydroperiod of ephemeral wetlands is often the most important characteristic determining amphibian breeding success, especially for species with long development times. In mesic and wet pine flatwoods of the southeastern United States, ephemeral wetlands were a common landscape feature. Reticulated flatwoods salamanders (Ambystoma bishopi), a federally endangered species, depend exclusively on ephemeral wetlands and require at least 11 weeks to successfully metamorphose into terrestrial adults. We empirically modeled hydroperiod of 17 A. bishopi breeding wetlands by combining downscaled historical climate-model data with a recent 9-year record (2006-2014) of observed water levels. Empirical models were subsequently used to reconstruct wetland hydrologic conditions from 1896-2014 using the downscaled historical climate datasets. Reconstructed hydroperiods for the 17 wetlands were highly variable through time but were frequently unfavorable for A. bishopi reproduction (e.g., only 61% of years, using a conservative estimate of development time [12 weeks], were conducive to larval development and metamorphosis). Using change-point analysis, we identified significant shifts in average hydroperiod over the last century in all 17 wetlands. Mean hydroperiods were shorter in recent years than at any other point since 1896, and thus less suitable for A. bishopi reproduction. We suggest that climate change will continue to impact the reproductive success of flatwoods salamanders and other ephemeral wetland breeders by reducing the number of years these wetlands have suitable hydroperiods. Consequently, we emphasize the importance of conservation and management for mitigating other forms of habitat degradation, especially maintenance of high quality breeding sites where reproduction can occur during appropriate environmental conditions.


Assuntos
Ambystoma/fisiologia , Clima , Modelos Biológicos , Áreas Alagadas , Animais , Reprodução , Sudeste dos Estados Unidos
6.
J Med Case Rep ; 4: 367, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21083879

RESUMO

INTRODUCTION: Necrotising fasciitis is a severe infection characterised by the fulminant destruction of tissue with associated systemic signs of sepsis and toxicity. Etanercept is a fully human fusion protein that inhibits tumor necrosis factor and the inflammatory cascade. It is effective in the treatment of many disorders but concerns regarding severe life threatening infections have been raised in multiple reports. CASE PRESENTATION: We present the case of a 39-year-old Caucasian man, who presented with sudden onset of severe and progressive neck and left shoulder pain, with a two-year history of seronegative rheumatoid arthritis treated with azathoprine and etanercept. On examination the left side of his neck and his left shoulder were oedematous, tender with an erythematous rash and his active range of movement was limited. Magnetic resonance imaging of his shoulder showed extensive oedema of the subcutaneous and intramuscular fat of the left lower neck consistent with fasciitis. He was treated medically and made a good recovery. CONCLUSION: Our patient, while having a pre-existing increased mortality risk, had a serious infection which responded well to optimum medical treatment without the need for surgery. As anti tumor necrosis factor agents are frequently associated with infection, including tuberculous infection, this case highlights the need for a high index of suspicion for other severe bacterial infections in patients on immunosuppressants.

7.
Cases J ; 2: 6715, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19918537

RESUMO

A 32-year-old male presented with diarrhoea, mucus and bleeding per rectum. On the basis of sigmoidoscopy, rectal mesalazine was commenced uneventfully, and subsequently changed to oral mesalazine due to failure to improve.He re-presented 4 days later with frequent rigors, lethargy, palpitations and was generally unwell. His condition settled with conservative management and IV antibiotics.Oral mesalazine was withheld during the first 24 hours but was recommenced on day 2. After 2 doses he developed rigors, pyrexia, tachycardia and vomiting.Oral mesalazine was discontinued thereafter and his condition progressively improved. Mesalazine has not been re-introduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA