Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 118(1): 31, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580509

RESUMO

Pharmacological inhibition of factor Xa by rivaroxaban has been shown to mediate cardioprotection and is frequently used in patients with, e.g., atrial fibrillation. Rivaroxaban's anti-inflammatory actions are well known, but the underlying mechanisms are still incompletely understood. To date, no study has focused on the effects of rivaroxaban on the bone marrow (BM), despite growing evidence that the BM and its activation are of major importance in the development/progression of cardiovascular disease. Thus, we examined the impact of rivaroxaban on BM composition under homeostatic conditions and in response to a major cardiovascular event. Rivaroxaban treatment of mice for 7 days markedly diminished mature leukocytes in the BM. While apoptosis of BM-derived mature myeloid leukocytes was unaffected, lineage-negative BM cells exhibited a differentiation arrest at the level of granulocyte-monocyte progenitors, specifically affecting neutrophil maturation via downregulation of the transcription factors Spi1 and Csfr1. To assess whether this persists also in situations of increased leukocyte demand, mice were subjected to cardiac ischemia/reperfusion injury (I/R): 7 d pretreatment with rivaroxaban led to reduced cardiac inflammation 72 h after I/R and lowered circulating leukocyte numbers. However, BM myelopoiesis showed a rescue of the leukocyte differentiation arrest, indicating that rivaroxaban's inhibitory effects are restricted to homeostatic conditions and are mainly abolished during emergency hematopoiesis. In translation, ST-elevation MI patients treated with rivaroxaban also exhibited reduced circulating leukocyte numbers. In conclusion, we demonstrate that rivaroxaban attenuates neutrophil maturation in the BM, which may offer a therapeutic option to limit overshooting of the immune response after I/R.


Assuntos
Medula Óssea , Rivaroxabana , Animais , Camundongos , Rivaroxabana/farmacologia , Neutrófilos , Hematopoese , Leucócitos , Células da Medula Óssea
2.
Cardiovasc Diabetol ; 22(1): 17, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707786

RESUMO

BACKGROUND: Type 2 Diabetes mellitus (T2DM) is a major risk factor for cardiovascular disease and associated with poor outcome after myocardial infarction (MI). In T2DM, cardiac metabolic flexibility, i.e. the switch between carbohydrates and lipids as energy source, is disturbed. The RabGTPase-activating protein TBC1D4 represents a crucial regulator of insulin-stimulated glucose uptake in skeletal muscle by controlling glucose transporter GLUT4 translocation. A human loss-of-function mutation in TBC1D4 is associated with impaired glycemic control and elevated T2DM risk. The study's aim was to investigate TBC1D4 function in cardiac substrate metabolism and adaptation to MI. METHODS: Cardiac glucose metabolism of male Tbc1d4-deficient (D4KO) and wild type (WT) mice was characterized using in vivo [18F]-FDG PET imaging after glucose injection and ex vivo basal/insulin-stimulated [3H]-2-deoxyglucose uptake in left ventricular (LV) papillary muscle. Mice were subjected to cardiac ischemia/reperfusion (I/R). Heart structure and function were analyzed until 3 weeks post-MI using echocardiography, morphometric and ultrastructural analysis of heart sections, complemented by whole heart transcriptome and protein measurements. RESULTS: Tbc1d4-knockout abolished insulin-stimulated glucose uptake in ex vivo LV papillary muscle and in vivo cardiac glucose uptake after glucose injection, accompanied by a marked reduction of GLUT4. Basal cardiac glucose uptake and GLUT1 abundance were not changed compared to WT controls. D4KO mice showed mild impairments in glycemia but normal cardiac function. However, after I/R D4KO mice showed progressively increased LV endsystolic volume and substantially increased infarction area compared to WT controls. Cardiac transcriptome analysis revealed upregulation of the unfolded protein response via ATF4/eIF2α in D4KO mice at baseline. Transmission electron microscopy revealed largely increased extracellular matrix (ECM) area, in line with decreased cardiac expression of matrix metalloproteinases of D4KO mice. CONCLUSIONS: TBC1D4 is essential for insulin-stimulated cardiac glucose uptake and metabolic flexibility. Tbc1d4-deficiency results in elevated cardiac endoplasmic reticulum (ER)-stress response, increased deposition of ECM and aggravated cardiac damage following MI. Hence, impaired TBC1D4 signaling contributes to poor outcome after MI.


Assuntos
Diabetes Mellitus Tipo 2 , Infarto do Miocárdio , Masculino , Camundongos , Humanos , Animais , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Insulina/farmacologia , Músculo Esquelético/metabolismo , Infarto do Miocárdio/metabolismo , Reperfusão , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo
3.
Front Immunol ; 14: 1275788, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274818

RESUMO

Introduction: Platelets play an important role in cardiovascular diseases. After acute myocardial infarction, platelets display enhanced activation and migrate into the infarct zone. Furthermore, platelets trigger acute inflammation and cardiac remodeling leading to alterations in scar formation and cardiac function as observed in thrombocytopenic mice. GPVI is the major collagen receptor in platelets and important for platelet activation and thrombus formation and stability. Antibody induced deletion of GPVI at the platelet surface or treatment of mice with recombinant GPVI-Fc results in reduced inflammation and decreased infarct size in a mouse model of AMI. However, the role of GPVI has not been fully clarified to date. Methods/Results: In this study, we found that GPVI is not involved in the inflammatory response in experimental AMI using GPVI deficient mice that were analyzed in a closed-chest model. However, reduced platelet activation in response to GPVI and PAR4 receptor stimulation resulted in reduced pro-coagulant activity leading to improved cardiac remodeling. In detail, GPVI deficiency in mice led to reduced TGF-ß plasma levels and decreased expression of genes involved in cardiac remodeling such as Col1a1, Col3a1, periostin and Cthrc1 7 days post AMI. Consequently, collagen quality of the scar shifted to more tight and less fine collagen leading to improved scar formation and cardiac function in GPVI deficient mice at 21d post AMI. Conclusion: Taken together, this study identifies GPVI as a major regulator of platelet-induced cardiac remodeling and supports the potential relevance of GPVI as therapeutic target to reduce ischemia reperfusion injury and to improve cardiac healing.


Assuntos
Infarto do Miocárdio , Glicoproteínas da Membrana de Plaquetas , Animais , Camundongos , Cicatriz , Colágeno/metabolismo , Inflamação , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores de Colágeno , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA