Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev E ; 105(4-1): 044409, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590571

RESUMO

Recent publications on spectroscopy of water layers in water bridge structures revealed a significant enhancement of the proton mobility and the dielectric contribution of translational vibrations of water molecules in the interfacial layers compared to bulk water. Herewith, the results of long-term studies of proton dynamics in solid-state acids have shown that proton mobility increases significantly with the predominance of hydronium, but not Zundel, cations in the aqueous phase. In the present work, in the light of these data, we reanalyzed our previously published results on broadband dielectric spectroscopy of bovine heart cytochrome c, bovine serum albumin, and the extracellular matrix and filaments of Shewanella oneidensis MR-1. We revealed that, just as in water bridges, an increase in electrical conductivity in these systems correlates with an increase in the dielectric contribution of water molecular translational vibrations. In addition, the appearance of spectral signatures of the hydronium cations was observed only in those cases when the system revealed noticeable electrical conductivity due to delocalized charge carriers.


Assuntos
Prótons , Água , Soroalbumina Bovina/química , Análise Espectral , Água/química
2.
Phys Chem Chem Phys ; 24(11): 6890-6904, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35253024

RESUMO

Recently, the low-temperature phase of water molecules confined within nanocages formed by the crystalline lattice of water-containing cordierite crystals has been reported to comprise domains with ferroelectrically ordered dipoles within the a, b-planes which are antiferroelectrically alternating along the c-axis. In the present work, comprehensive broad-band dielectric spectroscopy is combined with specific heat studies and molecular dynamics and Monte Carlo simulations in order to investigate in more detail the collective modes and single-particle excitations of nanoconfined water molecules. From DFT-MD simulations we reconstruct the potential-energy landscape experienced by the H2O molecules. A rich set of anisotropic temperature-dependent excitations is observed in the terahertz frequency range. Their origin is associated with the complex rotational/translational vibrations of confined H2O molecules. A strongly temperature dependent relaxational excitation, observed at radio-microwave frequencies for the electric field parallel to the crystallographic a-axis, E||a is analyzed in detail. The temperature dependences of loss-peak frequency and dielectric strength of the excitation together with specific heat data confirm a ferroelectric order-disorder phase transition at T0 ≈ 3 K in the network of H2O dipoles. Additional dielectric data are also provided for polarization E||b, too. Overall, these combined experimental investigations enable detailed conclusions concerning the dynamics of the confined water molecules that develop within their microscopic energy landscapes.

3.
Nat Commun ; 11(1): 3927, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764722

RESUMO

Intermolecular hydrogen bonds impede long-range (anti-)ferroelectric order of water. We confine H2O molecules in nanosized cages formed by ions of a dielectric crystal. Arranging them in channels at a distance of ~5 Å with an interchannel separation of ~10 Å prevents the formation of hydrogen networks while electric dipole-dipole interactions remain effective. Here, we present measurements of the temperature-dependent dielectric permittivity, pyrocurrent, electric polarization and specific heat that indicate an order-disorder ferroelectric phase transition at T0 ≈ 3 K in the water dipolar lattice. Ab initio molecular dynamics and classical Monte Carlo simulations reveal that at low temperatures the water molecules form ferroelectric domains in the ab-plane that order antiferroelectrically along the channel direction. This way we achieve the long-standing goal of arranging water molecules in polar order. This is not only of high relevance in various natural systems but might open an avenue towards future applications in biocompatible nanoelectronics.

4.
Sci Rep ; 10(1): 7076, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341430

RESUMO

A novel type of sub-lattice of the Jahn-Teller (JT) centers was arranged in Ti-doped barium hexaferrite BaFe12O19. In the un-doped crystal all iron ions, sitting in five different crystallographic positions, are Fe3+ in the high-spin configuration (S = 5/2) and have a non-degenerate ground state. We show that the electron-donor Ti substitution converts the ions to Fe2+ predominantly in tetrahedral coordination, resulting in doubly-degenerate states subject to the [Formula: see text] problem of the JT effect. The arranged JT complexes, Fe2+O4, their adiabatic potential energy, non-linear and quantum dynamics, have been studied by means of ultrasound and terahertz-infrared spectroscopies. The JT complexes are sensitive to external stress and applied magnetic field. For that reason, the properties of the doped crystal can be controlled by the amount and state of the JT complexes.

5.
RSC Adv ; 9(7): 3857-3867, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35518099

RESUMO

Conductive biomolecular systems are investigated for their promise of new technologies. One biomolecular material that has garnered interest for device applications is eumelanin. Its unusual properties have led to its incorporation in a wide set of platforms including transistor devices and batteries. Much of eumelanin's conductive properties are due to a solid state redox comproportionation reaction. However, most of the work that has been done to demonstrate the role of the redox chemistry in eumelanin has been via control of eumelanin's hydration content with scant attention given to temperature dependent behavior. Here we demonstrate for the first time consistency between hydration and temperature effects for the comproportionation conductivity model utilizing dielectric spectroscopy, heat capacity measurements, frequency scaling phenomena and recognizing that activation energies in the range of ∼0.5 eV correspond to proton dissociation events. Our results demonstrate that biomolecular conductivity models should account for temperature and hydration effects coherently.

6.
J Phys Condens Matter ; 31(6): 065604, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30524111

RESUMO

Accurate low temperature charge transport measurements in combination with high-precision x-ray diffraction experiments have allowed detection of the symmetry lowering in the single domain Tm0.19Yb0.81B12 crystals that belong to the family of dodecaborides with metal-insulator transition. Based on the fine structure analysis we discover the formation of dynamic charge stripes within the semiconducting matrix of Tm0.19Yb0.81B12. The charge dynamics in these conducting nano-size channels is characterized by broad-band optical spectroscopy that allowed estimating the frequency (~2.4 × 1011 Hz) of quantum motion of the charge carriers. It is suggested that cooperative Jahn-Teller effect in the boron sublattice is a cause of the large-amplitude rattling modes of the Tm and Yb ions responsible for the 'modulation' of the conduction band along one of the [Formula: see text] directions through the variation of 5d-2p hybridization of electron states.

7.
Phys Rev Lett ; 121(5): 056402, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118313

RESUMO

The electrodynamic response of organic spin liquids with highly frustrated triangular lattices has been measured in a wide energy range. While the overall optical spectra of these Mott insulators are governed by transitions between the Hubbard bands, distinct in-gap excitations can be identified at low temperatures and frequencies, which we attribute to the quantum-spin-liquid state. For the strongly correlated ß^{'}-EtMe_{3}Sb[Pd(dmit)_{2}]_{2}, we discover enhanced conductivity below 175 cm^{-1}, comparable to the energy of the magnetic coupling J≈250 K. For ω→0, these low-frequency excitations vanish faster than the charge-carrier response subject to Mott-Hubbard correlations, resulting in a dome-shaped band peaked at 100 cm^{-1}. Possible relations to spinons, magnons, and disorder are discussed.

8.
Nat Mater ; 17(9): 773-777, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30082905

RESUMO

The localization of charge carriers by electronic repulsion was suggested by Mott in the 1930s to explain the insulating state observed in supposedly metallic NiO. The Mott metal-insulator transition has been subject of intense investigations ever since1-3-not least for its relation to high-temperature superconductivity4. A detailed comparison to real materials, however, is lacking because the pristine Mott state is commonly obscured by antiferromagnetism and a complicated band structure. Here we study organic quantum spin liquids, prototype realizations of the single-band Hubbard model in the absence of magnetic order. Mapping the Hubbard bands by optical spectroscopy provides an absolute measure of the interaction strength and bandwidth-the crucial parameters that enter calculations. In this way, we advance beyond conventional temperature-pressure plots and quantitatively compose a generic phase diagram for all genuine Mott insulators based on the absolute strength of the electronic correlations. We also identify metallic quantum fluctuations as a precursor of the Mott insulator-metal transition, previously predicted but never observed. Our results suggest that all relevant phenomena in the phase diagram scale with the Coulomb repulsion U, which provides a direct link to unconventional superconductivity in cuprates and other strongly correlated materials.

9.
J Biol Phys ; 44(3): 401-417, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29732506

RESUMO

Employing optical spectroscopy we have performed a comparative study of the dielectric response of extracellular matrix and filaments of electrogenic bacteria Shewanella oneidensis MR-1, cytochrome c, and bovine serum albumin. Combining infrared transmission measurements on thin layers with data of the terahertz spectra, we obtain the dielectric permittivity and AC conductivity spectra of the materials in a broad frequency band from a few cm-1 up to 7000 cm-1 in the temperature range from 5 to 300 K. Strong absorption bands are observed in the three materials that cover the range from 10 to 300 cm-1 and mainly determine the terahertz absorption. When cooled down to liquid helium temperatures, the bands in Shewanella oneidensis MR-1 and cytochrome c reveal a distinct fine structure. In all three materials, we identify the presence of liquid bound water in the form of librational and translational absorption bands at ≈ 200 and ≈ 600 cm-1, respectively. The sharp excitations seen above 1000 cm-1 are assigned to intramolecular vibrations.


Assuntos
Citocromos c/química , Matriz Extracelular/química , Shewanella/química , Espectroscopia Terahertz/métodos , Água/química , Animais , Bovinos , Soroalbumina Bovina/química
10.
Sci Rep ; 7(1): 15731, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29147016

RESUMO

The electrodynamics of metals is well understood within the Drude conductivity model; properties of insulators and semiconductors are governed by a gap in the electronic states. But there is a great variety of disordered materials that do not fall in these categories and still respond to external field in an amazingly uniform manner. At radiofrequencies delocalized charges yield a frequency-independent conductivity σ 1(ν) whose magnitude exponentially decreases while cooling. With increasing frequency, dispersionless conductivity starts to reveal a power-law dependence σ 1(ν)∝ν s with s < 1 caused by hopping charge carriers. At low temperatures, such Universal Dielectric Response can cross over to another universal regime with nearly constant loss ε″∝σ1/ν = const. The powerful research potential based on such universalities is widely used in condensed matter physics. Here we study the broad-band (1-1012 Hz) dielectric response of Shewanella oneidensis MR-1 extracellular matrix, cytochrome C and serum albumin. Applying concepts of condensed matter physics, we identify transport mechanisms and a number of energy, time, frequency, spatial and temperature scales in these biological objects, which can provide us with deeper insight into the protein dynamics.


Assuntos
Albuminas/metabolismo , Citocromos c/metabolismo , Eletricidade , Matriz Extracelular/metabolismo , Shewanella/metabolismo , Animais , Bovinos , Condutividade Elétrica , Análise Espectral , Temperatura , Água/química
11.
Phys Chem Chem Phys ; 19(45): 30740-30748, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29125156

RESUMO

Using quantum mechanical calculations within density functional theory, we provide a comprehensive analysis of infrared-active excitation of water molecules confined in nanocages of a beryl crystal lattice. We calculate infrared-active modes including the translational, librational, and mixed-type resonances of regular and heavy water molecules. The results are compared to the experimental spectra measured for the two principal polarizations of the electric field: parallel and perpendicular to the crystallographic c-axis. Good agreement is achieved between calculated and measured isotopic shifts of the normal modes. We analyze the vibrational modes in connection with the structural characteristics and arrangements of water molecules within the beryl crystal. Specific atomic displacements are assigned to each experimentally detected vibrational mode resolving the properties of nano-confined water on scales not accessible by experiments. Our results elucidate the applicability and efficiency of a combined experimental and computational approach for describing and an in-depth understanding of nano-confined water, and pave the way for future studies of more complex systems.

12.
Sci Rep ; 7(1): 7360, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28779089

RESUMO

We report the values and the spectral dependence of the real and imaginary parts of the dielectric permittivity of semi-insulating Fe-doped InP crystalline wafers in the 2-700 cm-1 (0.06-21 THz) spectral region at room temperature. The data shows a number of absorption bands that are assigned to one- and two-phonon and impurity-related absorption processes. Unlike the previous studies of undoped or low-doped InP material, our data unveil the dielectric properties of InP that are not screened by strong free-carrier absorption and will be useful for designing a wide variety of InP-based electronic and photonic devices operating in the terahertz spectral range.

13.
Nanotechnology ; 28(44): 445204, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-28832014

RESUMO

Broad-band (4-20 000 cm-1) spectra of real and imaginary conductance of a set of high-quality pristine and AuCl3-doped single-walled carbon nanotube (SWCNT) films with different transparency are systematically measured. It is shown that while the high-energy (≥1 eV) response is determined by well-known interband transitions, the lower-energy electrodynamic properties of the films are fully dominated by unbound charge carriers. Their main spectral effect is seen as the free-carrier Drude-type contribution. Partial localization of these carriers leads to a weak plasmon resonance around 100 cm-1. At the lowest frequencies, below 10 cm-1, a gap-like feature is detected whose origin is associated with the energy barrier experienced by the carriers at the intersections between SWCNTs. It is assumed that these three mechanisms are universal and determine the low-frequency terahertz-infrared electrodynamics of SWCNT wafer-scale films.

14.
Nat Commun ; 7: 12842, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27687693

RESUMO

Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.

15.
Phys Rev Lett ; 95(11): 116804, 2005 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-16197030

RESUMO

The polarization dependence of the low field microwave photoconductivity and absorption of a two-dimensional electron system has been investigated in a quasioptical setup in which linear and any circular polarization can be produced in situ. The microwave induced resistance oscillations and the zero resistance regions are notably immune to the sense of circular polarization. This observation is discrepant with a number of proposed theories. Deviations between different polarizations occur only near the cyclotron resonance where an unprecedented large resistance response is observed.

16.
Phys Rev Lett ; 90(25 Pt 1): 257002, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12857158

RESUMO

The charge response in the spin chain and/or ladder compound Sr14-xCaxCu24O41 is characterized by dc resistivity, low-frequency dielectric spectroscopy and optical spectroscopy. We identify a phase transition below which a charge-density wave (CDW) develops in the ladder arrays. Calcium doping suppresses this phase with the transition temperature decreasing from 210 K for x=0 to 10 K for x=9, and the CDW gap from 130 meV down to 3 meV, respectively. This suppression is due to the worsened nesting originating from the increase of the interladder tight-binding hopping integrals, as well as from disorder introduced at the Sr sites. These results altogether speak in favor of two-dimensional superconductivity under pressure.

17.
Phys Rev Lett ; 89(23): 236403, 2002 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-12485024

RESUMO

Resistivity, optical, and angle-resolved photoemission experiments reveal unusual one-dimensional electronic properties of highly anisotropic SrNbO3.41. Along the conducting chain direction, we find an extremely small energy gap of only a few meV at the Fermi level. A discussion in terms of typical 1D instabilities (Peierls, Mott-Hubbard) shows that neither seems to provide a satisfactory explanation for the unique properties of SrNbO3.41.

18.
Phys Rev Lett ; 88(18): 186404, 2002 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-12005706

RESUMO

The optical conductivity of the heavy fermions UPd(2)Al(3) and UPt(3) has been measured in the energy range from 0.04 to 5 meV. In both compounds a well pronounced pseudogap of less than 1 meV develops in the optical response at low temperatures; we relate this to the antiferromagnetic ordering. From the energy dependence of the effective mass and scattering rate we conclude that the enhancement of the mass mainly occurs below the energy which is related to magnetic correlations between the local magnetic moments and the itinerant electrons. This implies that the magnetic order in these compounds is the prerequisite to the formation of the heavy quasiparticles and eventually to superconductivity.

19.
Phys Rev Lett ; 86(18): 4140-3, 2001 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-11328115

RESUMO

A transverse optical plasma mode is observed at far-infrared frequencies within the superconducting gap region by measuring the c-axis optical reflectivity for single crystals of T* cuprate superconductors SmLa0.85Sr0.15CuO4-delta and Nd1.4Sr0.4Ce0.2CuO4-delta. These T* cuprates have two different insulating layers sandwiching the superconducting CuO2 planes, leading to two longitudinal plasmons. Also, the transverse mode is directly observed due to the coupling of the infrared radiation with the current perpendicular to the superconducting layers which are regarded as an alternating array of two inequivalent Josephson junctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA