Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 238(1): 332-348, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36631978

RESUMO

Pepino mosaic virus (PepMV) is pandemic in tomato crops, causing important economic losses world-wide. No PepMV-resistant varieties have been developed yet. Identification of host factors interacting with PepMV proteins is a promising source of genetic targets to develop PepMV-resistant varieties. The interaction between the PepMV coat protein (CP) and the tomato glutathione S-transferase (GST) SlGSTU38 was identified in a yeast two-hybrid (Y2H) screening and validated by directed Y2H and co-immunoprecipitation assays. SlGSTU38-knocked-out Micro-Tom plants (gstu38) generated by the CRISPR/Cas9 technology together with live-cell imaging were used to understand the role of SlGSTU38 during infection. The transcriptomes of healthy and PepMV-infected wild-type (WT) and gstu38 plants were profiled by RNA-seq analysis. SlGSTU38 functions as a PepMV-specific susceptibility factor in a cell-autonomous manner and relocalizes to the virus replication complexes during infection. Besides, knocking out SlGSTU38 triggers reactive oxygen species accumulation in leaves and the deregulation of stress-responsive genes. SlGSTU38 may play a dual role: On the one hand, SlGSTU38 may exert a proviral function depending on its specific interaction with the PepMV CP; and on the other hand, SlGSTU38 may delay PepMV-infection sensing by participating in the redox intracellular homeostasis in a nonspecific manner.


Assuntos
Potexvirus , Solanum lycopersicum , Viroses , Sequência de Bases , Viroses/genética , Doenças das Plantas
2.
Plant Biotechnol J ; 20(10): 2006-2022, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35778883

RESUMO

The cap-binding protein eIF4E, through its interaction with eIF4G, constitutes the core of the eIF4F complex, which plays a key role in the circularization of mRNAs and their subsequent cap-dependent translation. In addition to its fundamental role in mRNA translation initiation, other functions have been described or suggested for eIF4E, including acting as a proviral factor and participating in sexual development. We used CRISPR/Cas9 genome editing to generate melon eif4e knockout mutant lines. Editing worked efficiently in melon, as we obtained transformed plants with a single-nucleotide deletion in homozygosis in the first eIF4E exon already in a T0 generation. Edited and non-transgenic plants of a segregating F2 generation were inoculated with Moroccan watermelon mosaic virus (MWMV); homozygous mutant plants showed virus resistance, while heterozygous and non-mutant plants were infected, in agreement with our previous results with plants silenced in eIF4E. Interestingly, all homozygous edited plants of the T0 and F2 generations showed a male sterility phenotype, while crossing with wild-type plants restored fertility, displaying a perfect correlation between the segregation of the male sterility phenotype and the segregation of the eif4e mutation. Morphological comparative analysis of melon male flowers along consecutive developmental stages showed postmeiotic abnormal development for both microsporocytes and tapetum, with clear differences in the timing of tapetum degradation in the mutant versus wild-type. An RNA-Seq analysis identified critical genes in pollen development that were down-regulated in flowers of eif4e/eif4e plants, and suggested that eIF4E-specific mRNA translation initiation is a limiting factor for male gametes formation in melon.


Assuntos
Cucurbitaceae , Fator de Iniciação 4E em Eucariotos , Gametogênese Vegetal , Doenças das Plantas , Infertilidade das Plantas , Proteínas de Plantas , Pólen , Potyvirus , Sistemas CRISPR-Cas , Cucurbitaceae/genética , Cucurbitaceae/virologia , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Gametogênese Vegetal/genética , Edição de Genes , Doenças das Plantas/genética , Doenças das Plantas/virologia , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Pólen/genética , Pólen/crescimento & desenvolvimento
3.
Phytopathology ; 105(10): 1389-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26075973

RESUMO

The genetic control of resistance to Cucurbit aphid-borne yellows virus (CABYV; genus Polerovirus, family Luteoviridae) in the TGR-1551 melon accession was studied through agroinoculation of a genetic family obtained from the cross between this accession and the susceptible Spanish cultivar 'Bola de Oro'. Segregation analyses were consistent with the hypothesis that one dominant gene and at least two more modifier genes confer resistance; one of these additional genes is likely present in the susceptible parent 'Bola de Oro'. Local and systemic accumulation of the virus was analyzed in a time course experiment, showing that TGR-1551 resistance was expressed systemically as a significant reduction of virus accumulation compared with susceptible controls, but not locally in agroinoculated cotyledons. In aphid transmission experiments, CABYV inoculation by aphids was significantly reduced in TGR-1551 plants, although the virus was acquired at a similar rate from TGR-1551 as from susceptible plants. Results of feeding behavior studies using the DC electrical penetration graph technique suggested that viruliferous aphids can salivate and feed from the phloem of TGR-1551 plants and that the observed reduction in virus transmission efficiency is not related to reduced salivation by Aphis gossypii in phloem sieve elements. Since the virus is able to accumulate to normal levels in agroinoculated tissues, our results suggest that resistance of TGR-1551 plants to CABYV is related to impairment of virus movement or translocation after it reaches the phloem sieve elements.


Assuntos
Afídeos/virologia , Cucurbitaceae/virologia , Luteoviridae/fisiologia , Doenças das Plantas/virologia , Animais , Cotilédone/virologia , Cucumis melo/virologia , Comportamento Alimentar , Floema/microbiologia , Folhas de Planta/parasitologia
4.
Mol Plant Pathol ; 13(7): 755-63, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22309030

RESUMO

Efficient and sustainable control of plant viruses may be achieved using genetically resistant crop varieties, although resistance genes are not always available for each pathogen; in this regard, the identification of new genes that are able to confer broad-spectrum and durable resistance is highly desirable. Recently, the cloning and characterization of recessive resistance genes from different plant species has pointed towards eukaryotic translation initiation factors (eIF) of the 4E family as factors required for the multiplication of many different viruses. Thus, we hypothesized that eIF4E may control the susceptibility of melon (Cucumis melo L.) to a broad range of viruses. To test this hypothesis, Cm-eIF4E knockdown melon plants were generated by the transformation of explants with a construct that was designed to induce the silencing of this gene, and the plants from T2 generations were genetically and phenotypically characterized. In transformed plants, Cm-eIF4E was specifically silenced, as identified by the decreased accumulation of Cm-eIF4E mRNA and the appearance of small interfering RNAs derived from the transgene, whereas the Cm-eIF(iso)4E mRNA levels remained unaffected. We challenged these transgenic melon plants with eight agronomically important melon-infecting viruses, and identified that they were resistant to Cucumber vein yellowing virus (CVYV), Melon necrotic spot virus (MNSV), Moroccan watermelon mosaic virus (MWMV) and Zucchini yellow mosaic virus (ZYMV), indicating that Cm-eIF4E controls melon susceptibility to these four viruses. Therefore, Cm-eIF4E is an efficient target for the identification of new resistance alleles able to confer broad-spectrum virus resistance in melon.


Assuntos
Cucurbitaceae/genética , Cucurbitaceae/virologia , Resistência à Doença , Fator de Iniciação 4E em Eucariotos/metabolismo , Doenças das Plantas/virologia , Interferência de RNA , Vírus de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA